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Introduction:

The purpose of this grant was to develop methods to estimate the mechanical properties
of tissue, especially the elasticity, in vivo. These methods will be used to evaluate those
mechanical properties as indicators of breast cancer. MR images were used to measure the
displacement of tissue resulting from a low frequency vibration of the tissue. We developed
methods of vibrating tissue in the magnetic field of the MR system, developed the MR pulse
sequences that measure the resulting displacement and developed the an algorithm to reconstruct
the elasticity from the measured displacements. The algorithm to reconstruct the elasticity
allows resolutions a factor of at least ten better than previous methods.
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Body:
® Technical Objective 1: Refine the MR measurement of three dimensional displacement

during vibration. Build the high power, low noise apparatus to measure the three

dimensional displacement during vibration. Compare the measured displacement to

measurements from a calibrated hydrophone and tune the system.
We have developed a driver to vibrate tissue at low frequencies in the MR magnet. It is made of
three stacks of piezoelectric crystals that produce very high forces and have a very linear response.
See Fig. 1 below. The apparatus is described in the manuscript submitted to Medical Physics [2] and
included in the Appendix. We have measured displacements in the magnet using a gradient echo
pulse sequence that measures displacements in all three directions. The measured displacements
agree well with independent measurements using a Capacitec Model 410-SC probe. The
displacements measured with the MR and the Capacitec probe agree very well; the gel at the edges
of the phantoms are within 25% with the Capacitec measurements of the motion of the plastic wall
holding the phantom.
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Figure 1: The measured displacements vs. driving voltage at several frequencies.
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We also developed noise reduction methods to improve the MR estimates of displacement

[3,4,5,8,10] especially at very low displacement.

o Technical Objective 2: Compare the elasticity calculated from the MR displacements with a
linear model to known elasticity’s for isotropic and anisotropic materials. Modify the scale with
the vernier to measure the elasticity manually with a mechanical method. Build phantoms and
compare the elasticity calculated from the MR displacements with a linear model to known
elasticity’s for isotropic and anisotropic materials.

We have implemented finite element code that models the displacement of a variety of gels and

tissue. It is clear from the MR measurements and from the simulations that the full partial

differential equation is needed to accurately describe the system. Representative examples of those
simulations are shown in [1,2,6,9]. Copies of the posters and papers are in the Appendix. We have
measured the elasticity of gel phantoms with mechanical methods, by estimating the wavelength of

100 Hz vibrations in the MR displacement images and by the inversion of the partial differential

equations using the method we developed and have reported on in Mag. Reson. Med. [1]. The three

methods agree to a reasonable extent. However, we believe the best way to estimate the elasticity of
homogeneous gels is by estimating the wavelength in the MR displacement images. Any frequency
effects are accounted for and Poisson’s ratio need not be estimated. These results are also shown in
the four publications listed above and included in the Appendix.

o Technical Objective 3: Establish the limits of the linear, lossless elastic model of tissue motion
during vibration. Find the dependence of MR elasticity on the frequency and amplitude of the
vibration. Measure motion perpendicular to the direction of forced vibration. Measure viscous
losses by the attenuation of the vibration across the material. Develop and test finite element
code to calculate the displacement. Compare the measured displacements with the
displacements calculated with a finite element analysis for: Phantoms with simple geometry,
Complicated phantoms, Lean meat (probably a roast), Meat with fat and muscle (probably a
slab of bacon).

We have established the limits of the linear model with simulations and measurements on phantoms

(results of technical objective 2) without getting to more complicated structures; the full partial

differential equations (PDE’s) are required to dscribe motion accurately. We have measured viscous

losses with reconstruction methods [2,7,9]. We have developed finite element code to calculate the
displacements with known materials (the forward problem) and compared them to measured
displacements [1,2,6,7,9].

The results we now have suggest that we need to measure steady state vibration in the tissue to
allow accurate reconstruction of the elasticity using the PDE’s for harmonic motion. The PDE’s for
harmonic motion assume steady state motion. It is possible to solve the PDE’s for transient motion
as well but it is significantly easier to solve the steady state equations than the equations for transient
motion. We have designed a system to drive the tissue in steady state using the MR system’s clock
so the vibration remains in sync with the MR over the entire acquisition [11]. We have begun to
gather steady state data on gels and the reconstructions are very good [11].

We have made some, limited tissue measurements as well as measurements on gels. We were
lucky enough to get some breast tissue from a breast reduction surgery. We made measurements on
that tissue instead of the meat we proposed because it represents real breast tissue much better than
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meat which is mostly muscle. Recent publications such as [Krouskop, T.A, et. al., “Elastic moduli
of breast and prostate tissues under compression” Ultrasonic Imaging 20(4):260-74, 1998], suggest
that there are significant differences between breast tissue and muscle. The MR images of breast
tissue from breast reduction surgery are excellent but the motion is very small because the
mechanical coupling between the tissue and the plexiglas wall is poor without the skin to hold the
tissue. There are several possible approaches to the coupling problem but we had no time to pursue
them. However, we did make a first effort at vibrating breasts of volunteers. We have measured
adequate vibrations in a volunteer but the apparatus proved to be too uncomfortable to use. We are
currently modifying the apparatus extensively to make it usable; this work is being done under the
new NIH grant.

There are two significant aspects to our reconstruction algorithm [1,2,7,11,12]. The most
significant aspect of the new algorithm is that it reconstructs the elasticity with resolution on the
order of the pixel size of the MR images. Previous elasticity estimates from dynamic displacements
had spatial resolution on the order of the wavelength of the vibration which is much larger than the
pixel size. The other significant aspect of the algorithm is that it is readily extended to three
dimensional problems [12]. The zones used in the method can be made small enough that they can
be solved in three dimensions. There are several groups that believe the three dimensional problem
must be solved to get accurate estimates of the elasticity in vivo.

We believe that extensive in vivo measurements should be possible in approximately one year.
Clinical results should then yield the usefulness of elasticity in breast cancer detection. The current
line of research provides a workable approach to generating elasticity from dynamic vibration. The
results of this work should be compared to the elasticity estimates from quasi-static MR and
ultrasound to see if the extra information generated from dynamic measurements is productive.
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Research Accomplishments:
e Method of reconstructing the in vivo elasticity from measured displacements. The method
has been tested in 2D and can be extended to 3D.

e Developed apparatus to vibrate tissue in the MR with large forces and accurate
synchronization with the MR imaging system.

e New noise reduction methods were developed to improve the MR estimates of displacement.

Reportable Outcomes:

e Five papers and five peer reviewed presentations with abstracts have resulted from this grant.
The papers and presentations are listed in the Bibliography.

e The methods and results from the work supported by this grant have formed one section of a
Program Project Grant submitted to the NIH in June of 1998. It received very good scores
and was resubmitted in June of 1999. The 1999 resubmission was funded.
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Conclusions:

We have shown that partial differential equation solutions are needed to accurately estimate the
elasticity from measured displacements, even with very small displacements. Further, we have
proposed and tested an algorithm to solve for the elasticity from measured displacements. The
algorithm performs exceptionally well in simulation and produces generally accurate solutions
from measured data. We have good evidence that most of the inaccuracies in the reconstruction
of measured data results from transient effects in the tissue vibration. The most significant
aspect of the new algorithm is that it reconstructs the elasticity with resolution on the order of the
pixel size of the MR images. Previous elasticity estimates from dynamic displacements had
spatial resolution on the order of the wavelength of the vibration which is much larger than the
pixel size.

With improved steady state vibration, which we have developed and have begun testing, and the
extension of our reconstruction algorithm from 2D to 3D, which we have started, obtaining
accurate estimates of the elasticity of tissue in vivo is possible. Therefore, clinical evaluation of
elasticity as an indicator of cancer should be possible within a year or, at most, two.

10
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Magnelic. Resonance in Medicine 42:779-786 (1999)

An Overlapping Subzone Technique for MR-Based Elastic

Property Reconstruction

EE.W. Van Houten,"™ K.D. Paulsen,23 M.L Miga,! F.E. Kennedy,' and J.B. Weaver?

A finite element-based nonlinear inversion scheme for mag-
netic resonance (MR) elastography is detailed. The algorithm
operates on smail overlapping subzones of the total region of
interest, processed in a hierarchical order as determined by
progressive error minimization. This zoned approach allows for
a high degree of spatial discretization, taking advantage of the
data-rich environment afforded by the MR. The inversion tech-
nique is tested in simulation under high-noise conditions (15%
random noise applied to the displacement data) with both
complicated user-defined stiffness distributions and realistic
tissue geometries obtained by thresholding MR image slices. In
both cases the process has proved successful and has been
capable of discerning small inciusions near 4 mm in dia-
meter. Magn Reson Med 42:779-786, 1999. © 1999 Wiley-Liss,
Inc.

Key words: elasticity reconstruction; nonlinear inversion; finite
element method; magnetic resonance elastography; subzone
technique; model-based imaging

The diagnostic value of tissue elasticity has long been
appreciated in a broad spectrum of medical applications,
and understanding of its importance continues to grow.
From pathology detection (1,2), to robotic surgery (3.4), to
the use of computational modeling during surgical proce-
dures (5-7), a demand for detailed and accurate tissue
elasticity information has been generated. Recent research
into the use of mechanical properties of biological tissue
for clinical decision making has moved away from direct
mechanical measurements (8,9) and turned toward various
medical imaging technologies to assess tissue behavior
under mechanical loads. The idea of ultrasound elastogra-
phy has been introduced (10-16) in which some form of
ultrasonic displacement measurement technique is used to
detect subsurface tissue motion. This displacement infor-
mation can then be correlated to the elastic property
distribution in the tissue with the aid of a model for tissue
motion as a function of shear or Young’s modulus (17-19).

Ultrasound's inherent lack of lateral resolution and
limited axial resolution when compared with other clini-
cally available imaging modalities has motivated the devel-
opment of magnetic resonance (MR) elastography methods
(20-22). MR offers the potential of generating highly
resolved. three-dimensional (3D) information with relative
ease, as opposed to the considerable challenge associated
with obtaining equivalent data from ultrasound tech-
niques. However, given the availability of finely sampled

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
2Dartmouth Hitchcock Medicat Center, Lebanon, New Hampshire.
3Norris Cotton Cancer Center, Lebanon, New Hampshire.
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3D displacement fields, the task of developing a robust
algorithm capable of deducing elastic property distribu-
tions from these displacement images while maintaining
the refinement of the MR data remains.

Strategies for addressing the reconstruction problem
have varied widely to date. Chenevert et al. are investigat-
ing MR elastography through a quasistatic displacement
approach (23). whereas Raghavan and Yagle have devel-
oped an inversion technique based on a finite difference
formulation of the global elasticity equations (24). A collabo-
ration between Lewa and De Certaines has attempted to
determine the viscoelastic properties directly from MR
measurements (25). Manduca et al. have developed an
inversion scheme based on a local frequency estimation
that is correlated to a local elasticity value (26}, and Sumi
and Nakayama have presented a method for numerically
integrating the two-dimensional (2D) stress-strain relations
to reconstruct a shear modulus distribution from strain
measurements (27).

In this report, we present a finite element-based method
for solving the elastography inversion problem by use ofa
Jeast-squares minimization of the difference between mea-
sured displacement data from the MR and computed
displacement solutions. Our approach is not unlike that
recently presented by Kallel and Bertrand for ultrasound
techniques (18), except that model-based optimization is
performed on small overlapping subzones of the total
tissue region of interest that are processed in an hierarchi-
cal order determined by progressive error minimization.
This is a significant shift in the conceptual framework for
property inversion that allows the recovery of an elasticity
distribution at the MR displacement measurement resolu-
tion. Property estimation at the MR pixel level is not
computationally viable as a single global minimization
problem; however, the subzone approach we have identi-
fied eliminates this limitation by recasting the image
reconstruction objective as a sum of minimizations rather
than a single minimization of sums. The results show that
the overlapping zone concept is robust with respect to
simulated measurement noise and that local minimization
of the least-squares match between the model and the MR
displacement data leads to high-quality global property
distribution images.

SUBZONE INVERSION

Our approach capitalizes on recent advances in model-
based image reconstruction of tissue properties whereby
the nonlinear relationship between the physical property
distribution to be determined and the measured tissue
response to an applied stimulus is preserved (28-30).
Specifically, we formulate the MR elastography image-
reconstruction problem as a constrained optimization task
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FIG. 1. Schematic diagram of the subzone concept. {1, total problem
domain; I', boundary; (1, single subzone domain; I',, single subzone
boundary.

whose objective is to minimize the difference between a set
of measured displacement fields and those computed by a
model description in which the tissue property distribu-
tion is parameterized as a set of unknown coefficients. The
typical strategy is to define a single objective to be mini-
mized that is the sum of the squared differences between
measured and calculated quantities over the entire set of
tissue response observations that are available (31):

min F(E), {1a]
where
N
F(E) = 2 (ul = uf)* + (v — vi)? {1b]

=5

and u}" and v{" are the x and vy vector components of the
measured displacement at location /, while uf and vj are
the calculated vector components at the same position, for
a total of N different locations. E is the M-dimensional
vector of elasticity parameters that is expanded on a
continuous basis set, ¢, to define the tissue property
distribution of the tolal region of interest, £).

This total problem domain, {2, may be thought of as the
union of multiple “subzones,” €. of the total RO, as
illustrated in Fig. 1, so that we may rewrite the global
functional, F(E), as a sum of locally defined functionals,

Van Houten et al.

F,(E,), for the zth subzone. For Q subzones,

Q
F(E) = D, F,(E,). . (2]
z=1

where the minimization of the sum is replaced by the sum
of minimizations on the individual subzones:

Q
min F(E}) = min 2 F(E) = 2 min F(E,)] [3al
z=1

Q
z=1

with

N,
FAE) = >, (uf — up)? + (vt = vi)%, [3b]

I2=1

when each subzone consists of N, tissue response observa-
tions and M, tissue property parameters such that N, < N
and M, < M.

The advantages of this approach are severalfold. First,
the nonlinear minimization process occurs on only M,
tissue property parameters using N, observations at a time.
The significant reduction in the size of the inversion
problem is important because the least-squares approach
scales cubically in the number of optimization parameters
to be determined. Second, it maximizes the utilization of
the complete MR displacement data set and the concomi-
tant tissue property resolution that can be achieved. Assum-
ing that tissue displacements can be measured at the MR
pixel level, the total amount of tissue response data and
tissue property values that could be recovered in a single
minimization problem exceeds the computational re-
sources available today. By dividing the problem into
subzones, high-resolution (MR pixel-level) property maps
can be deduced that take full advantage of the high density
of tissue measurements that the MR technique provides.

Once defined on the subzone, the minimization problem
proceeds in standard fashion. Determination of the sub-
zone elastic properties requires differentiation of F; in Eq.
[3b) with respect to each of the M, property parameters
contained in E,, which produces the nonlinear system

aF, auj M vy
z Z
=T = E,(u;”—uf)_ + E (v = vi) = =0
()Ezl 1,=1 ‘ ‘ (’Ez‘ =1 “ # ('Ezl
. ; P N, Iy
()Fz Nz ()ul Ny (\'
Z z
== > — ) = D v - ) o =0
f dEL_, = 1 1 (iEZ2 =1 I 1, f’Ez._,
oF N, auf
Z z
= = > (!~ uf)
z ()EZMI i=1 z z {)El.\l,
N, ("Vy
I — 4 1
+ (v,y v‘,,) T 0. [4]
1.=1 i S Zyy.




Subzone-Based Elasticity Reconstruction

Solution of this equation set by Newton's method leads to
iterative improvements in the elastic property profile such
that

EW) = E" + AE,, . [5a)

where AE, is the property update vector determined from
the solution of the regularized matrix system

[(H + «D] [AE) = [-f3} Isb]

with f, = {f{, f3, ..., fi,|" and the approximate Hessian
matrix (second-order terms are dropped), Hj, having the
elements

af ! Ne [ouf duf  avj vy
e e

JE} i=1|0E% 9E}  OE} 9E}

i i 1] t ¥

evaluated at the current property estimate denoted by
the superscript n. In Eq. (5b), « is a scalar regulari-
zation parameter added to the diagonal of H to facilitate
its inversion, because H is known to be poorly condi-
tioned. This parameter is scaled to the subzone prob-
lem at hand by use of the Levenberg-Marquardt approach
(32). ‘

Solution of Eq. [5b] requires a vehicle for calculating the
subzone displacement field and its derivatives with re-
spect to each property parameter given the current estimate
of the property distribution on the subzone. Here, we
assume that the displacement field is described by the
partial differential equation governing time-harmonic, iso-
tropic, linearly elastic motion:

V.GVu + V(A + GV u= — po?u, [6a]

where u is the displacement vector, p is the tissue density
and G and \ are Lamé’s constants

G= E b

T2+ 2v) (6]
vE

A [6c]

- 1+ v)(1 — 2v)

for Poisson’s Ratio, v, and Young's modulus, E. For simplic-
ity, we consider p and v to be known constants, leaving G,
or equivalently E, as the elastic property parameter distri-
bution to be estimated from the displacement field. To
solve Eq. [6a), we use the finite element method as
summarized in the Appendix.

The required derivatives are calculated by differentiat-
ing Eq. [6a] directly with respect to each property param-
eter, E, for j= 1,2, ..., M, and solving the resulting partial
differential equation in the derivative quantity of interest

781
on the same finite element discretization:
0
— (V- GVu + V(A + GV - u = — pw?ul
dEzi
v aGT VGVau Va GV
=V . + \ - + A+ e
2 " aEz‘_ ("E,i( )V -u
YO + GF du _du (7]
FYN+ GV — =~ pot —, [7
) iE, " 0E, @
which when rewritten in the form
oG
V.GVu,+ V(A + GV - u’ = — po*u;— V.—Vu
) ] ! ('Ez‘
J
- V?()\ + G)V-u, [7b]

[¢
%

where uj = du/0E,, has the identical form of Eq. [6a] in the
quantity uj except for the occurrence of two additional
right-hand-side quantities expressed in terms of u. Because
Eq. [5b] is evaluated at the current property estimate, u can
be computed through Eq. [6a] leaving uj as the only
unknown in Eq. [7b]. Evaluation of the terms expressing
the differentiation of the elastic property distribution with
respect to its parameterization, dG/9E;, is facilitated by
expanding the elastic constants in the finite element basis
so that E = 335 E; The finite element discretization of
Eq. [7b] is described in further detail in the Appendix.

In practice, the subzone inversion algorithm begins with
an initial estimate of the elastic property distribution, E°,
defined over the entire problem space, . From this
estimate, a global displacement field, u®, is computed from
Eq. [6a] with the finite element method based on known
displacement conditions from the MR data set, u, applied
along the global boundary, I'. The squared error between
the resulting displacement solution and the measured MR
data is then calculated for each element. By using this error
metric, an hierarchical list of element centroids is gener-
ated in which the element order is based on a decreasing
squared-error contribution. A subzone domain, 1,, is then
formed about an element centroid in the list by including
all nearby elements whose centroids are within a user-
defined radial distance from the subzone center. Figure 2
shows an example of a simple global finite element mesh
with a close-up view of a single subzone that has been
extracted for illustrative purposes. Once the subzone has
been identified, a displacement field is calculated on the
subzone by using the latest property parameter estimate,
E™, and the MR displacement information on the subzone
boundary, I',, as the boundary conditions required for
finite element solution. The subzone property distribution
is iteratively updated with the inversion process embodied
in Eq. [5b] until a local convergence criterion between the
computed and measured displacements internal to the
subzone has been reached. At this point, the next element
centroid in the error contribution list having participated
in the fewest inversion operations is used to define another
subzone. and the process of local convergence in the
displacement field between computed and meas ured quan-
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EIG. 2. lllustration of the mesh-based subzone technique in which a
single subzone (a) has been extracted from a global finite element
mesh (b).
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tities is repeated. The zoning process continues until every
element in the global mesh has been iterated a minimum
number of times. The subzone solutions then end, another
global displacement field calculation is executed with the
latest property profile, and the zoning procedure begins
again. Figure 3 illustrates the overall image reconstruction
process.

RESULTS

Initial evaluations of the zoning algorithm have been
performed on various numerical simulations of the dis-
placement patterns generated in vibrating tissue. For these
experiments, synthetic data were produced with the finite
element method displacement calculation described in the
Appendix. The mesh geometries were developed from MR
images taken from actual patients, one being a modified
anatomically coronal breast slice and the other a coronal
brain image. For simplicity, we have assumed that the only
unknown elastic parameter is Young’s modulus, although
this is not an inherent limitation in our algorithmic ap-
proach per se. Values for tissue density and Poisson’s ratio
were prescribed as 1020 kg/cm® and 0.49, respectively. The
small wavelengths that develop in soft tissue (a Young’s
modulus of 8000 Pa was used for the background tissue
value here) require that the planar MR image be divided
into a large number of elements to ensure that the wave
propagation is adequately well resolved. For example, the
mesh used for the breast geometry consisted of 16,555
nodes and 32,635 linear triangular elements, resolving the
tissue continuum to approximately 0.8 mm. The wave-
length of a 100-Hz shear wave in this case is 1.62 cm/cycle.
so this resolution provides approximately 18 or 19 nodes
per mechanical wavelength. For synthetic data production.
a spatial elasticity distribution is required. We have gener-
ated property distributions by thresholding MR images that
contain either an arbitrary, user-defined elasticity map, as
shown in Figure 4a, or one that follows tissue substruc-
tures that are identifiable in the MR image, as represented

FIG. 3. Flowchart of the subzone inversion
algorithm.
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FIG. 4. Breast elasticity problem consisting of an artificial property distribution containing three heterogeneities of increasing contrast with the
background. a: Exact Young's modulus distribution (kPa), which includes three heterogeneities, designated as objects 1,2, and 3. b: Synthetic
x-direction displacement magnitude {um]. c: Synthetic y-direction displacement magnitude [um]. d: Reconstructed Young's modulus

distribution (kPa) in the presence of 15% measurement noise.

in Figure 5a. Before inversion, a certain percentage of
random noise is added to the synthetic data to simulate
signal degradation that will occur in practice. This noise is
generated by scaling the average displacement with a
random number up to a given percentage and adding or
subtracting that value from the original displacement at a
particular node. The noisy solution is then used by the
inversion algorithm described above as the measured data
set.

For the breast case, an clasticity distribution was created
that provided challenging inclusion geometries as well as a
variety of inclusion stiffnesses. The background tissue
stiffness was assigned a Young's modulus of 8000 Pa,
which is believed to be at the lower end of actual soft tissue
values (8,9.33). Inclusion stiffness ranges were determined
as multiples (2 for object 1, 5X for object 2 and 10X for
object 3 in Fig. 4a) of the background stiffness to test the
contrast resolution of the numerical algorithm. The stiffest
of the inclusions (object 3 in Fig. 4a) is roughly 4 mm in
diameter, representing a very small tumor within the
tissue. Once the stiffness information has been formulated
for the forward problem, boundary conditions of 100 Hz

and 10 pm sinusoidal displacements are applied and the
displacement solution is generated, shown here as x and ¥
displacement magnitudes in Fig. 4b and c, respectively.
Note the complex nature of this displacement pattern. For
the small wavelengths expected in soft tissue, these com-
plex displacement fields could lead to difficulties in
generating property distributions based on direct interpre-
tation of the displacement or strain image. The property
inversion shown in Fig. 4d was generated by using syn-
thetic data with 15% added noise with an initial guess of a
uniform Young's modulus of 7000 Pa. The inversion pro-
cess consisted of 18 sweeps over the entire space, each
sweep involving roughly 1000 subzones of approximately
150 elements and 100 nodes each to ensure that every node
was operated on at least once.

To demonstrate the ability of the algorithm to process
realistic geometries generated from MR images, an elastic-
ity distribution was reconstructed on a mesh generated
from a coronal brain slice with two simulated inclusions as
shown in Fig. 5a. To ensure accurate resolution, this mesh
consisted of 19,446 nodes and 38,332 linear triangular
elements. For this tissue, a background Young's modulus of
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FIG. 5. Brain elasticity problem consisting of a property distribution
derived from white/gray matter segmentation of a coronal MR image.
a: Exact Young’s modulus distribution (kPa) of the white/gray matter
background with two artificially placed stiff anomalies designated as
objects 1 and 2. b: Reconstructed Young's modulus distribution (kPa)
in the presence of 15% measurement noise.

8000 Pa was used (33), representing the white matter,
while the gray matter was assumed to be twice as stiff. The
larger inclusion (designated as object 1 in Fig. 5a) measures
approximately 1 cm and was assigned a stiffness five times
that of the white matter, whereas the smaller inclusion
(designated as object 2 in Fig. 5a) is roughly 4 mm in
diameter and was specified as being an order of magnitude
stiffer than white matter. The inversion process was com-
pleted in six global sweeps of 1240 subzones on average,
with approximately 164 elements and 100 nodes in each
zone. Figure 5b shows the recovered property distribution
in the presence of 15% added noise; which compares very
favorably with the exact distribution contained in Fig. 5a.
A small degree of spatial filtering was found to be helpful
in achieving a convergent solution in this case of high
noise (34). This technique works to average the local
property value at node i with the values at its immediately
adjacent nodes so that E/** = (1 — OEN + 0/N; LY, E‘,-"",
where N; is the number of neighbor nodes connected to

Van Houten et al.

node i. For the inversion shown in Fig. 5b, a value of 0.2
was used for 8. Note that no spatial filtering was used (i.e.,
9 = 0) during the inversion shown in Fig. 4d.

CONCLUSIONS

The image reconstructions presented in Figs. 4 and 5 show
that the zoned inversion scheme is able to generate accu-
rate Young's modulus distribution images on the basis of
displacement information obtained in the presence of high
noise (up to 15%). The zoned inversion method also allows
for a high degree of parameter discretization. taking full
advantage of the data-rich nature of an MR displacement
image. This high resolution allowed the inversion routine
to discern hard inclusions as small as 4 mm in diameter
during simulation. Although there are additional complexi-
ties associated with the inversion of actual MR data, these
promising simulation results suggest that the subzone
technique should provide a powerful framework for recov-
ering elasticity distributions with MR elastography. Specifi-
cally, it provides a computationally viable approach that
capitalizes on the MR measurement density to yield high-
resolution (pixel-level) tissue property maps. The complex
nature of the displacement fields that develop in soft tissue
makes an imaging algorithm that exploits modeling con-
cepts essential. Use of the finite element method allows the
incorporation of tissue mechanics into the analysis of
measured displacement patterns so that the complicated
waveforms inherent in multidimensional elastic systems
may be taken into account.

The finite element inversion process also provides some
important avenues for dealing with noisy data and more
complicated physical models. The iterative inversion
scheme detailed here is amenable to a total variation
minimization process, which can be useful in reducing the
effects of noise degradation (35). Work is also under way to
incorporate a Maxwellian damping term into the inversion
process so that tissue-damping effects can be both ac-
counted for and measured in the same manner that Young’s
modulus is recovered with the algorithm detailed here.
Furthermore, the process should be adaptable to modeling
transient motion rather than using a steady-state assump-
tion if steady-state data sets cannot be obtained from the
MR. In summary, this zoned finite element inversion
technique provides a powerful method for deriving highly
resolved Young's modulus distribution information in a
way that is robust in the presence of high noise and
adaptable to a variely of modifications that could improve
its performance in the future.

APPENDIX

Here we describe the finite element formulation of the
forward and inverse problems in more detail. The govern-
ing equation of linear elasticity, Eq. [6a], is cast in terms of
the Cauchy stress tensor, .7 which leads more readily to the
2D plane stress or plane strain conditions assumed for the
forward and inverse solutions presented.
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The Forward Problem

If steady-state harmonic motion is assumed, the real valued
displacement vector solution can be represented as the real
part of a complex-valued, spatially varying displacement
phasor multiplied by the complex exponential

u(x, y, ) = Refu(x, y)e™!|, {8}

where spatial coordinates x and y and complex displace-
ment components u and v define

u

(9l

ulx, y) = v

In stress tensor notation, the harmonic equilibrium condi-
tion will then be (36)

V..7= - potii +F, (10}

making use of the complex harmonic inertia, p#®u/df* = — po?
ueit, and including any additional body forces F that may
be present. The stress tensor.7 can be defined as

o=y kg, b kr,
T = loy + 7, t+ RT.\.Z
T, = i1, +jo, + f(‘rﬂ

T, = i1, + jTZy + r(o'z,

and for 2D plane strain or plane stress assumptions the
stress-strain relations for elastic solids can be written in the
matrix form

au )
1 74,0 ax
a
X Z, 1 0 av
o, =E.% > J}_/ , [11]
Ty 0 0 — .
Zillou  av
—+
dy  dx
with
1-v

(plane strain) or - (plane stress)
1 -2

=
1+ v)(1—2v)
v .
Ly = P (plane strain) or v (plane stress)
-v

_ 1
—2(1+v)'

W

where E is Young’s modulus.
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To facilitate the solution of this set of equations
for complicated geometries containing realistic property
distributions, a finite element discretization method
is adopted where @, the approximate solution to the
displacement magnitude T, is expanded on a set of locally
active, spatially varying Lagrangian basis functions, ¢;, so
that

N

by, and © =, vdy, (12]

=

f
Mz

where u; and v; are the approximate x and y di-
rected displacements at the jth of N nodes. Developing a
Galerkin weak form of Eq. [10] generates the system of
equations

(A} '

1]
‘A,l = [b), [13]

with matrix [A] consisting of the subelements

_|%n Q2
la;d = S [14]
where
0d; b ad; ad; ]
Q= <)‘al 'Z1+'._‘._’E (/—pco‘d),-d),-
JdX ox Ay oy
od; ()(b, ad; 0d;
, = Lyt ——E-%
G2 <ax ay 2T Gy ax
. _ [P0 //+§:{9&E v
® o \ay ax ax oy 7
Ad; db; ad; od;
(xw"‘( LT v+ ——E. %~ pu? i),
2 \ay ay dX 9x

and the column vectors of unknown nodal displacements
and right-hand-side forcing being written as
{ ,
o= [a) = [y, 9, Gy, Py e oo, Gan VA1 [15]

h

and

(16]

for iand jrunning from 1 to N.

The Inverse Problem

For the inversion problem, the basis set used to expand the
parameterized elasticity solution is taken to be the same
finite element basis set used to expand the displacement
solution 1. The calculation of the du/dE terms needed to
generate the Hessian matrix and the right-hand-side vector
fin Eq. [5b] is then achieved directly by the differentiation
of Eq. [13], the discretized version of Eq. [10], with respect
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A
o —[A] 5 v : [17]

doyy Oy,
(')a‘.'. ;,Ek (')Ek [ ]
= 18
0E;. day;  Octy,

with

S+
ax ax i

doty, (mb,. ad;

“,Ek

ad; db;
—— bl
Ay oy

Aoty (r')d),- ad;
oy +

oy oy
9E,

- - ja4
ox oy oy ax

dog, [, od; ad; 0d;
— =y =
(')Ek ( ¢k 172

A
oy ox ax oy d"")

IxX 0x

do ad; 0;
= ity +
IEy ay ay
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The determination of the elastic property distribution in heterogeneous gel samples with a finite
element based reconstruction scheme is considered. The algorithm operates on small overlapping

subzones of the total field to

allow for a high degree of spatial discretization while maintaining

computational tractability. By including a Maxwellian-type viscoelastic property in the model phys-

ics and optimizing the spatial distribution of this property in the same manner as elasticity, a
Young's modulus image is obtained which reasonably reflects the true distribution within the gel.
However, the image lacks the clarity and accuracy expected based on simulation experience. Pre-
liminary investigations suggest that transient effects in the data are the cause of a significant
mismatch between the inversion model, which assumes steady-state conditions, and the actual

displacements as measured by a phase contrast MR technique.
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I. INTRODUCTION

Interest in accurate, quantitative evaluation of the physical
properties of biological tissue is rapidly increasing as the
value of this information has been appreciated in such appli-
cations as lesion detection, medical examination, and com-
puter assisted surgical procedures. One particular area of in-
terest includes the assessment of the elastic properties of
tissue through the analysis of noninvasive image-based,
strain measurements. Ultrasound elastography has been stud-
ied for some time.!"S where ultrasonic imaging is used to
detect subsurface displacement response o an externally ap-
plied displacement source. While ultrasound elastography
continues to hold promise in terms of providing valuable
tissue data. it is presently limited by the lack of lateral reso-
Jution in ultrasonic imaging compared to other available mo-
dalities. This potential drawback has led to the investigation
of MR-based strain imaging lechniques.9~I4 In addition to
fully three-dimensional imaging capabilities, MR offers
higher resolution than ultrasound, making it a very appealing
method for discerning micron level displacement fields in
biological structures.

Regardless of the strain imaging technique, it is generally
agreed that some type of model-based reconstruction proce-
dure is required for determination of elastic property
distributions.'*'® To date these models have varied widely in
complexity, from simple algorithms relating 2 Local Fre-

0094-2405/2000/27(1)/101/7/$17.00

quency Estimation (LFE) to stiffness via a standard wave
equation formulation'” to nonlinear inversion schemes which
operate on a partial differential equation (PDE).>'3-** While
many of the methods proposed to date have shown prormise
in simulation, there has been limited success in producing
accurate inversions of measured dynamic strain data. This
points to a variety of issues, such as viscoelastic behavior ~
and transient effects, which need investigation in order to
develop successful, robust algorithms for elasticity imaging
through interpretation of harmonic displacement fields.
While inversion in the case of dynamic, rather than quasi-
static, mechanical motion has shown the need for a high
level of algorithmic sophistication, the benefits of the proce-
dure are potentially significant. By generating strain fields
through dynamic displacement propagation, elasticity infor-
mation can be inferred in structures inaccessible by means of
quasi-static surface actuation, e.g., the brain. In addition, dy-
namic displacements are useful for estimating tissue proper-
ties other than elasticity, such as dispersion and density. This
paper examines the first applications of a subzone-based
elastic property reconstruction scheme,? with an additional
Maxwellian-type viscoelastic term, to experimental MR data.
This algorithm is based on a well-established nonlinear in-
version scheme,>'®!® where the global reconstruction tech-
nique is instead performed on small, local *‘subzones’” of the
tissue region of interest (ROI). The improvements in algo-

© 2000 Am. Assoc. Phys. Med. 101
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rithmic performance found through the addition of viscoelas-
tic behavior are encouraging but not complete. Evidence pre-
sented here suggests that the method’s assumption of steady-
state motion in the MR generated data may be the primary
discrepancy in the data-model match.

il. INVERSION METHOD

The nonlinear elastic property reconstruction scheme that
forms the core of the subzone inversion technique is centered
around a squared error minimization formulation, '8
where the agreement between the calculated displacements
derived from the most recent property estimate, uj at loca-
tion /. and the measured displacement data at that location,

u)', is sensed by the functional

N
_ I 2
F—,Z’, (uf'—uyp)", N
for N measurement locations. Minimization of this functional
is accomplished by equating its derivatives with respect to
the reconstruction parameters 10 Zero, generating the matrix
system

[(H+a){AT}-{}=0, @

with AT representing the vector of parameter updates, f be-
ing the derivatives of F in Eq. (1) with respect to the param-
eter field T, and H being the approximate Hessian matrix.
The regularization parameter a is added to the diagonal of H
and scaled to the inversion problem at hand by the
Levenberg—Marquardt method? to facilitate solution of Eq.
@.

Two elastodynamic models have been implemented to
date in order to provide displacement calculations based on
the estimated parameter distributions. The simplest involves
an undamped linear elastic relationship, while the other adds
a Maxwellian viscoelastic coefficient to account for the at-
tenuation of displacement in tissue. Expressed in terms of a
PDE in displacement, u, these models can be written as™

B
u

c”.—
V-GVll+V()\+G)V-u=p:7't7. (3)
for a linear elastic tissue of density p having properties G and
\ and

du '
V-GVu+V()\+G)V-u=§—07+p-;7Tg-, “)

for a Maxwellian viscoelastic material with damping coeffi-
cient {.

In general, the inversion problem defined in Eq. (2) is
intractable for highly resolved material property distributions
as computing a single solution update scales cubically with
the size of the vector I'. To overcome this resolution limita-
tion, a subzone inversion scheme has been d«:veloped20
which recasts the global error functional in Eq. (1) as @ sum
of functionals defined on small subzones of the total ROIL,

Qe
F= F. . (9
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Fic. 1. Piezoclectric displacement actuator with image A showing the entire
device including the phantom box on the Jeft and image B showing a close
up of the nine parallel driven piezocrystal stacks attached to one wall of the
rigid phantom container. The imparted motion is parallel to the long axis of
the piezoelectric actuator which is denoted as the x direction in subsequent
figures.

where min(F) is replaced by
]
E min(F.) 6)

for Q subzones. Further details on the mathematical and
computational underpinnings of this technique are described
in Ref. 20: the algorithm essentially relying on foundations
previously developed in Refs. 18. 19. In numerical simula-
tions the formulation has been found to be very effective in
reconstructing high resolution (MR pixel level) parameter
distributions even in the presence of high noise (upto 15% in
the undamped linear elastic case). as reported in Ref. 20. The
subzone-based inversion method has also been found to ex-
ecute relatively quickly, with global property distribution so-
Jutions for meshes of approximately 20000 nodes being
completed in a few hours. Direct solution of the full inverse
problem for a mesh of this size is computationally infeasible
on workstations currently available. Here, we describe our
initial experience in applying the algorithm to dynamic MR
displacement data measured in gel phantoms.

lil. MR DISPLACEMENT IMAGING TECHNIQUE

To obtain displacement measurcments, We have devel-
oped an MR-compatible mechanical driver which can vibraie
tissue-like gel phantoms in a strong magnetic field. Figure |
shows the device which is currently in use. The design i>
centered around an actuator constructed of nine piezoelectric
stacks wired in parallel. Three layers, each separated by sta-
bilizing ceramic plates and consisting of three piezostacks.
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of mechanical motion is directly linked to the data acquisition time associ-
ated with one phase encoding event.

\ ore used to provide adequate displacement under dynamic
joad. Individually, each stack is capable of £7 um of dis-
placement when driven by a 100-Vpp signal, so that the as-
sembly as a whole can ideally produce *21 um of motion.
The stacks are powered by a wide band amplifier which
boosts the sinusoidal driving signal generated by the MR
pulse program. Using the MR pulse sequence to generate the
driving signal for mechanical vibration allows almost any
waveform to be used and also allows highly accurate control
.  the phase between the mechanical vibration and the mo-
lion encoding gradient. However, this also limits the time of
mechanical stimulation to the signal duration of the motion
sensitizing gradients as described below (see Fig. 2). Inde-
pendent measurements of actuator motion using a capaci-
tively coupled displacement probe have demonstrated that
the response of the actuators is linear in the applied voltage
for a given frequency, yielding 10-15 um of displacement at
100 Hz, 60 Vpp-

The motion encoding MR gradient sequence, based on a
~imple gradient echo sequence, is illustrated in Fig. 2. The
imaging process involves three cycles of mechanical motion
driven by signal from the RF, the last two of which coincide
with the sensitizing gradients. The phase in the MR image is
recorded for different phase relationships between the ap-
plied motion and the encoding gradients to calculate the har-
monic displacement in each pixel of an image. Four such
phase relationships are used to ensure internal consistency
hetween the measured phase and the fit to the expression C
+ M cos @. where the amplitude, M, and the relative phase,
«, completely characterize the harmonic motion. The con-
stant phase offset, C, has no bearing on the measured motion.
MR timing and resolution parameters for these image acqui-
sitions are: TR=300ms; TE= 58ms; FOV=8cm; 256
X 128 pixels; 10-mm slice thickness.

V. EXPERIMENTAL RESULTS

Tnitially, homogeneous gels were used to validate the MR
measurement system. Figure 3 shows a typical example of
the displacements obtained in 2 homogeneous gel phantom
(5 cmX5cmX4 cm), where the 100-Hz, x-directed actuation
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was applied through the bottom and two side walls of the
rigid gel container (see Fig. 1). The displacements were re-
corded in both the horizontal (v) and vertical (y) directions
such that they form a two component vector field in the
imaging plane parallel to the axis of mechanical translation.
Because of the symmetry in'this case, only a single central
plane is illustrated. Distortional (shear) wave fronts are evi-
dent with a wavelength of approximately | cm. This wave-
length is consistent with the known Young's modulus of the
gel (3-5 kPa, as measured in separate mechanical tests).
Peak displacements measured in the gel at the walls of the
box were approximately 10 um. which mirrors the data col-
lected with an independent measurement probe.

In Fig. 3, the images in the first column represent data
collected for x-directed (horizontal) motion while the second
column shows the corresponding data for y-directed (verti-
cal) motion. The first row, A, shows a standard grayscale MR
image of the homogeneous gel phantom. while rows B and C
show the reconstructed motion parameters M and ¢. respec-
tively. The botiom row, D, shows the overall displacement
field, given by M cos ¢ for each vector displacement compo-
nent. It is interesting to note that there is a small discrepancy
between these displacement images and the known boundary
conditions, i.c., a nonzero displacement along the bottom of
the gel phantom. This is due to an imperfection in an early
prototype of the mechanical driver, where the horizontal
plane of motion did not exactly correspond to the horizontal
plane of the MR, leading to a uniform y-directed displace-
ment offset within the gel.

The development of wavelike behavior is readily visible
in the magnitude (row B) and displacement fields (row D) as
expected. However, the mechanics of the wave propagation
are fairly complex, even for a homogeneous gel phantom as
illustrated in Fig. 3, due to the asymmetric (top to bottom)
boundary conditions which exist. From the x directional dis-
placement (row D, left), it is evident that the predominant
mode of wave propagation is shear motion caused by the
bottom surface acting as a distortional wave source. The uni-
form horizontal peaks and valleys suggest the gel is nearly
incompressible at this length scale (short compared to the
dilatational wavelength) and low frequency, SO that dilata-
tional wave propagation is not supported. The same conclu-
sion is reached by examining the ¥ motion in Fig. 3 (row D,
right) where uniform vertical contours exist, indicating a
shear mode of propagation. Another noticeable characteristic
is the apparent damping of motion from the walls to the
center of the gel (row B) suggesting that the wavefronts may
have undergone some dispersion or may not represent fully
developed harmonic motion.

Figure 4 shows MR generated x and y displacement data
for a block of agar gel with a hard. spherical agar gel inclu-
sion approximately 1.5 cm in diameter. The plane shown is
the same as Fig. 3, cutting through the center of the phantom
with its x-axis in line with the direction of vibration. The
y-directed displacement offset associated with Fig. 3 has
been removed by the elimination of the imperfection in the
mechanical driver. Figure 5 presents a standard grayscale
MR image of the gel phantom. Interestingly, the inclusion is
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barely visible in image A. showing that the elastic property
contrast does not translate into conventional MR image con-
wrast. Tt is also the case that the displacement ficlds them-
sclves (Fig. 4) do not clearly indicate the presence of the
harder inclusion embedded within the gel. For visualization
purposes. the area of heterogeneity has been outlined in im-
age B of Fig. 5.

Image reconstructions of the elastic property distribution
in the heterogencous gel sample (Fig. 5) obtained from the
MR displacement data (Fig. 4) are presented in Fig. 6. Two
inversions are shown: one with the undamped elastic model
from Eq. (3) (image A) and the other with the damped model
presented in Eq. (4) (images B and C). where image B shows
the elasticity distribution and image C shows the map of the
Maxwellian attenuation coeflicient for the damped model re-
construction. While both images A and B clearly recover the
presence of a hard inclusion near the center of the gel. the
Jize and overall localization of the inclusion are more uccu-
rately represented in the damped model inversion. Tmage C
indicates that the surrounding gel has a relatively low attenu-
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Radians

Note that the images in this figure are
dimensioned in pixel coordinates.

100 120 140

ation component while the inclusion exhibits a level of in-
creased damping.

The results in Fig. 6 are encouraging, especially since
they represent one of the first elastic property images derived
from experimental MR data where displacements have been
measured under conditions of a dynamically applied me-
chanical stimulus. However, further improvements are desir-
able and necessary if MR elastography is to progress clini-
cally. While qualitatively satisfying, the images in Fig. 6 are
not immediately as promising as those achieved in simula-
tion studies.”® which raises important questions about the
adequacy of the model relative to the imaging physics. The
improvement in the elastic property image with the addition
of attenuation effects demonstrated in Fig. 6 suggests that
data-model match is critical. In this regard it is important 10
note that the MR displacement field is acquired during the
first three harmonic cycles of the displacement stimulation
which is intermittently applied with the pulse sequencing
(see Fig. 2) as the data associated with each pixel/voxel is
generated. Hence, it is quite possible that the measured dis-

RS 3
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B

Fig. 4. Displacement data generated by the phase contrast MR imaging
method for the gel sample shown in Fig. 5. Image A shows the x direction
displacement while image B shows the y direction displacement, both in
pm,

lacements do not reflect fully developed wavefronts which
save reached the dynamic steady state, creating a conflict
with the harmonic motion assumption used in the inversion
model.

To investigate this possibility. we simulated the transient
behavior of the MR data acquisition using a time-domain
solution of Eq. (4) where the stimulation was applied to the
walls of the phantom for three cycles at 100 Hz. The time
history of each node in the finite element mesh which com-
prises the measured displacement field was then Fourier
wansformed and the 100-Hz component (magnitude and
phase) was extracted in order to represent the MR displace-
ment measurements. This data was then supplied to our fre-
quency domain inversion algorithm (after being corrupted
with 10% added noise), which produced the elastic property
image shown in image A of Fig. 7. This image is strikingly
similar in character to the images in Fig. 6. In image B of
Fig. 7. we also show the case where the simulated measure-
ment data is taken from the steady-state solution (with 10%
added noise) and inverted with the algorithm. The improve-
ment in the recovery of the elastic property distribution is
remarkable and suggests that the degradation of the image in
Fig. 6 results in part from data-mode! mismatch between the
transient motion which is measured and the time-harmonic
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FiG. 5. Standard MR contrast image of a heterogeneous gel sample where
image B includes a superimposed outline of the hard inclusion.

model which is assumed. Tt is also interesting to note that the
recovery of the elastic properties is quantitative for the
steady-state data image (image B) whereas the reconstructed
properties are an order of magnitude too high for the tran-
sient data image (image A). presumably due to some form of
artificial hardening which tries to compensate for the data-
model mismatch. The reconstructions from experimental
data in Fig. 6 exhibit the same character (i.e., an effective
hardening of the embedded inclusion).

V. CONCLUSIONS

Previous simulations° indicate that quantitative image re-
construction of elastic property distributions can be recov-
ered in the presence of considerable measurement noise (up
to 15%) using an overlapping zone finite element inversion
technique. Reconstructed property resolution can be pre-
served at the MR measurement level (i.e.. pixel resolution)
with this approach. Initial experience with reconstructions of
actual MR data in heterogeneous gel phantoms consisting of
harder inclusions embedded in a softer background is en-
couraging and shows that the localized increase in stiffness
can be found (despite a lack of conventional MR image con-
trast or contrast observable directly in the displacement field
itself). In this regard, the incorporation of displacement at-
tenuation through the addition of a Maxwellian viscoelastic
term in the governing computational model has been shown
to improve the recovery of the size. shape, and location of
the hard inclusion. However, simulations of the potential
transient effects in the MR displacement measurements indi-
cate that the data-model mismatch between the MR data ac-
quisition method and the assumed steady-state image recon-
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FiG. 6. Two inversions of the MR displacement data shown in Fig. 4. Image
A shows the reconstruction based on the undamped linear elastic model in
Eq. (31 [kPa] and images B and C show the resulting elasticity (image B)
and Mazwellian damping timage €) distributions of the viscoelastic model
[Eqy. (1] inversion. in units of [kPa] and [kg/s 1e6]. respectively.

struction model may be the most important factor which
presently limits the recovered property image quality.

Two immediate pathways for resolving this inconsistency
present themselves. As demonstrated in the transient simula-
tion reported here. the MR displacement encoding gradient
imaging process can be modeled by taking the frequency
component of the transient displacement solution related to
the harmonic excitation. By incorporating this process into

Medical Physics, Vol. 27, No. 1, January 2000

€Ol Q018 032 40 003 ANS 0X 0015 (06
W P,

non(n]

a9

¥ Pot Ton v
v ©
s

9203

oM 001 (05

0.0 00
Poa

0 00w oI Qms 8%
¥ Prince ]

Fic. 7. Two inversions of the simulated data set where image A shows the
reconstruction based on displacement data generated in three cycles of mo-
tion starting from rest [kPa] while image B shows the same reconstruction
process carried out on steady-state data [kPa].

the subzone inversion technique. the transient effects present
in displacement images generated in three or four cycles of
actuation could be modeled. presumably leading to hi:n
quality inversions from transient data sets of this type. Alter-
natively, by separating the driving signal for the mechanical
actuator from the gradient signal, but maintaining phase co-
herency with the MR gradients through the use of a phass-
lock loop, mechanical excitation could be applied throughout
the image acquisition process. This would assure that the
resulting displacement images represent the steady-state mo-
tion of the sample. which should also lead to high qual-.y
property reconstructions. Which approach provides the bast
image reconstructions while still offering a convenient and
feasible imaging process remains to be determined. At this
point both of the strategies mentioned here remain as viable
options.
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Applications of Monotonic Noise Reduction Algorithms in fMRI,
Phase Estimation, and Contrast Enhancement

John B. Weaver

Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03755

ABSTRACT: Noise reduction using monotonic fits between extrema
has been shown to work well on images, especially those with very
low signal-to-noise ratios (SNRs). In this article we will explore three
applications of monotonic noise reduction in magnetic resonance
imaging (MRI). The first application is reducing noise in function MRI
{fMRI) studies. Reduced noise allows greater flexibility. For example,
it allows the activated regions to be identified using noisier images
acquired in less time or fewer cycles of stimulation. Activation maps
were calculated from the images after noise reduction had been
applied to each image in the series. The parameters used in the noise
reduction were optimized so the images produced best matched the
average of the entire series. The CNR was improved significantly in
the activation maps. The results can be extended to any other fMRI
paradigm. The second application was reducing noise in complex
data to improve the SNR of the phase in the complex MRI image. The
error in the phase was reduced by a factor of three in the simulations
shown. In the third application, we introduced a simple contrast-
enhancement method using monotonic noise reduction. To enhance
contrast, the coarse features were reduced in size; the smaller size
features were increased in size; very small features that are likely to be
noise were attenuated. The result is a simple, effective method of
improving the contrast of features of a selected size in images with no
false features introduced. © 1999 John Wiley & Sons, Inc. Int J Imaging Syst
Technol, 10, 177-185, 1999

Key words: noise reduction; fMRI; contrast enhancement; phase
estimation

I. INTRODUCTION

Monotonic noise reduction is a relatively new method that is effec-
tive at lower signal-to-noise ratios (SNRs) than other methods
(Weaver, 1997). It also avoids Gibb’s ringing and blurring, two
common problems that afflict currently used methods. Noise reduc-
tion filters and denoising methods fit many adjacent data points to a
set of basis functions. This change of basis allows the parts of the
data most likely to be noise to be suppressed. The effectiveness of
the particular method depends on how well the basis separates noise
from data. In high noise regions, projection onto the basis functions
that average large numbers of pixels represents the data most accu-
rately and therefore has the least noise. Representing the data with
only those basis functions leads directly to bandlimiting loss of
spatial resolution and undersampling artifacts. Monotonic noise
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Contract grant sponsor: DAMD; Contract grant number: 17-96-1-6119
Contract grant sponsor: NIH; Contract grant number: H133G70031-98

© 1999 John Wiley & Sons, Inc.

reduction does not fit the data with a limited set of basis functions,
so no undersampling or ringing artifacts are introduced and there is
no bandlimiting. It simply constrains the data to be monotonic
between extrema.

A. Monotonic Noise Reduction in One Dimension. Mono-
tonic noise reduction is simplest in one dimension. An elegant
algorithm (Demetriou, 1990; Demetriou and Powell, 1991) that
produces the monotonically increasing series that fits a data set best
in a least-squares sense is used. The algorithm travels through the
data until it finds a decrease. A decrease violates the monotonic
condition. When it finds a decrease, the algorithm averages that
decreasing data point with as many previous points as is necessary
to establish monotonic increase. The algorithm then continues the
process by searching for the next decrease. When all of the decreases
are averaged away, the algorithm is completed.

The primary advantage of this algorithm for noise reduction is
that it smoothes the data as little as possible and does not blur edges.
The algorithm leaves all increases unchanged; both sharp and
smooth increases remain unchanged so no smoothing occurs at all.
The algorithm averages just as many data points as necessary to get
a monotonically increasing series so the data are smoothed as little
as possible.

However, not all signals are monotonically increasing functions.
A monotonically decreasing series can be easily obtained with the
same algorithm by reversing the order of the data or by subtracting
the data from some large constant. The algorithm can also be used
to produce a piecewise monotonic series by breaking the data into
regions between extrema that are each fit to increasing or decreasing
monotonic series.

The key to fitting piecewise monotonic series is to identify the
extrema correctly. In this sense, monotonic noise reduction is very
similar to wavelet denoising. The key in both cases is in identifying
the extrema. In wavelet denoising, extrema in the gradient are
required and in monotonic noise reduction the signal peaks are
required. To select significant extrema, we have used a Fourier filter
to smooth small extrema away. Then only extrema that are different
from previous and subsequent extrema by more than a user-defined
threshold are used. There are two parameters that the user must set
to find the extrema: the bandwidth allowed through the Fourier filter
and the minimum difference between extrema that is allowed. When
the extrema are found, noise can be suppressed by forcing mono-
tonic change between the extrema. The algorithm in one dimension
is shown in Figure 1.
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Figure 1. The one-dimensional monotonic noise-reduction algo-
rithm. (Top to bottom) The original signal, the signal plus added noise,
the blurred signal with the selected extrema shown as vertical lines,
and the results of monotonic noise reduction. The SNR is 10; the
standard deviation of the noise is one tenth and the peak signal is one
so the total signal energy is less than 10 times the total noise energy.

B. Monotonic Noise Reduction in Two Dimensions. The
extension of the algorithm to multiple dimensions is accomplished
by ordering the pixels in the image into a onc-dimensional series
where the one-dimensional algorithm can be used. In previous
versions of this algorithm, the one-dimensional algorithm was run
on the rows and then the columns of rotated versions of the image
(Weaver, 1997b). As many rotations as needed were used. However,
most of the noise is eliminated using just four angles. Thercfore, a
faster version of the algorithm that uses the one-dimensional algo-
rithm on the rows, columns, and diagonals of the image is used here.
Figures 2 and 3 illustrate the steps used in the algorithm. No
interpolation is required to rotate the image to other angles, which
speeds up the algorithm significantly. This version of the algorithm
was used in all of the applications presented here. This algorithm
was coded in Matlab@ with two subroutines coded in C. It runs in
10-20 s on a 256 X 256-pixel image on a DEC Alpha@. Earlier
versions of the algorithm required 2-3 min. In both cases, the time
required depends on the number of extrema identified. More extrema
increases the run time. Interactive languages like Matlab@ are
significantly slower than Fortran or C, so execution times could be
reduced significantly.

Figure 2. The selection of extrema in the two-dimensional monotonic noise reduction algorithm. The top image is the original image with
significant noise. The Fourier blurred image is shown below the original image. The extrema are selected along the columns, rows, and both
diagonals of the two-dimensionally blurred image. The four images at the bottom show the position of the selected extrema for all four directions.
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Figure 3. Application of the one-dimensional algorithm in the two
dimensional monotonic noise-reduction algorithm. The pixels be-
tween extrema along the columns are made monotonic. The rows of
the processed image are then processed using the one-dimensional
algorithm. This forms one intermediate image. Processing the rows
and then the columns forms another intermediate image. Processing
the upper left to lower right diagonal followed by the lower left to
upper right diagonal forms another intermediate images. Processing
the lower left to upper right diagonal followed by the upper left to
lower right diagonal forms the last intermediate image. All four inter-
mediate images are averaged together to form the final processed
image.

Il. REDUCING NOISE IN FMRI ACTIVATION MAPS

In functional magnetic resonance imaging (fMRI), multiple serial
images of the same anatomy are obtained during a series of mental
tasks (Frank et al., 1998; Jezzard and Song, 1996; Turner, 1997;
Weisskoff, 1995). Small changes in the signal of brain tissue reflect
the small blood flow changes and oxygenation levels that are asso-
ciated with activation. At 1.5 T the changes in signal are around 3%
(Turner et al., 1993), which is the same size as the random noise in
good-quality images. Therefore, only changes that are correlated
with the mental tasks over many task cycles signify activation. Noise
in the images limits fMRI studies in several ways. The images are
generally low resolution to obtain sufficient SNR to detect the
activations. As much imaging time as possible is used to obtain the
required SNR. Reducing the imaging time would reduce the SNR,
but it would mitigate several other problems. It might be possible to

reduce artifacts and it would allow more flexibility in task design.
Many mental tasks are difficult to turn on and off consistently over
several cycles. For example, memory tasks are difficult to turn off
because it is difficult to stop thinking about something. Distraction
can be effective but is not consistent and distraction introduces other
activations. On the other hand, many activations are difficult to
maintain in a controlled manner. Concentration can wander to the
noise of the scanner or other unintended subjects very easily. There-
fore, reducing the sensitivity to noise is important. We have used
monotonic noise reduction to eliminate some of the random noise in
the images so the activation-related signal changes are more easily
identified from noisier images that can take less time to acquire.

A. Methods. We used the monotonic noise reduction algorithm
described above on each image in an fMRI motor activation study.
The unusual aspect of filtering fMRI images is that they are all
nearly identical so the average image is an excellent, low-noise
estimate of each individual image. We used the average image to
estimate the best parameters to use in the noise reduction algorithm.
The parameters that made one of the images in the middle of the
series most like the average image were used. The Nelder—-Mead-
type simplex search method implemented in Matlab@ was used to
find the optimum parameters for the monotonic noise-reduction
method. Then, each image in the series was processed using the
same parameters. Simple z-scores of the images were used to form
the activation map.

We used a simple motor activation study that clearly showed
both right- and left-hand activation. We then added normally dis-
tributed random noise to the images. The activation maps were
calculated with and without monotonic noise reduction. The average
z-scores in the activated regions and in the background brain were
calculated to evaluate how well the activation could be identified.
The activated regions were those that had a z-score above 3 in the
original activation maps. The background region was the entire brain
except rectangular regions centered on the right and left activations.
The activation maps were calculated with nine amounts of added
noise. The standard deviation of the noise ranged from 0% to 25%
of the maximum signal in the image. The noise energy added ranged
from 0% of the total image energy to 93% of the total image energy.

The motor study we used is a simple one that is used in a
laboratory exercise for engineering students. Although the study
design is old, the random noise is representative of almost any fMRI
study. Therefore, the noise reduction shown using this study is
representative of noise reduction using other fMRI studies. The
study was performed on a 1.5-T General Electric Signa system with
10 mT/m gradients. A single axial plane 4 cm below the apex of the
cranium was imaged. Six cycles of rest and motor activation were
obtained. Each cycle of images consisted of five resting images
followed by five images taken during tapping of the right hand
followed by five images taken during tapping of the left hand. Each
image was a 256 X 256, 24-cm field of view, gradient-echo image
with a TR of 70 ms and TE of 40 ms. The images were strongly T2*
weighted. z-scores for each pixel were used to identify activated
regions. The standard deviation of the 90 images was used as a
measure of the total variation in signal. To obtain the signal corre-
lated with right hand finger tapping, the average of the rest and left
hand tapping was subtracted from the average of the right hand
finger tapping. The activation map for the right hand motor task was
the ratio of the signal correlated with right hand finger tapping over
the total variation in signal. Similarly, the activation map for the left
hand motor task was the ratio of the signal correlated with left hand
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Figure 4. The activation maps for left and right motor activity obtained from six cycles of a simple motor task. The maps in each column were
obtained from the original data with different amounts of added noise. Ten percent added noise means that the standard deviation of the random
noise is 10% of the maximum pixe! intensity in the average image. The top row are the activation maps for the right hand task. The second row
are the activation maps for the left hand task. The third and fourth rows are the activation maps for the right hand and left hand, respectively,
when monotonic noise reduction is applied to the raw images before the z-scores are calculated. False activations appear in both right and left
maps with 10% noise when noise reduction is not used. Monotonic noise reduction allows the activations to be identified when as much as 20%
added noise; in this case, the noise energy is essentially half of the total energy in the image. The regions identified were those with at least one
pixel with the maximum value in the true activated region. All pixels in the region were above the mean z-score in the true activated region. This
method ensured that the true activated region was identified, but it shows how unique that region is.

finger tapping over the total variation in signal. The images were
aligned using a multiscale, rigid alignment method developed by
Unser et al. (1993) and Kostelec et al. (1998). Alignment did not
change the results dramatically.

B. Results. The z-score maps calculated from the original images
were used as the true position of the motor strips. The first column
of Figure 4 shows the activation maps obtained from all six cycles
of the right- and left-hand motor task both with and without noise
reduction. When the standard deviation of the added noise was 10%
of the maximum signal value, spurious activations were seen in the
right and left unfiltered maps. There were no spurious activations
when noise reduction was used. When the standard deviation of the
added noise was 20% of the maximum signal value, the spurious
activations eliminated all possibility of identifying the correct acti-
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vated regions when noise reduction was not used. There were no
spurious activations in the right-hand activation map when noise
reduction was used, and few in the left. The size of the activated
regions increased when noise reduction was used because the cutoffs
used to identify the activation were set by the unprocessed maps.

Figures 5 and 6 show the mean z-scores in the activated regions
and in the background for right- and left-hand tasks, respectively.
using monotonic noise reduction increased the z-score in the acti-
vated region by as much as 128% for the right-hand task and 143%
for the left-hand task. The average increase was 66% for the right-
hand task and 75% for the left-hand task. The average z-scores in the
background region remained essentially unchanged.

Noise reduction algorithms were only effective for random noise.
Systematic sources of noise such as patient motion or the cerebro-
spinal fluid (CSF) moving cannot be reduced with these methods.
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Figure 5. The mean z-scores of pixels in the region activated during
right-hand activity as a function of added noise. (Top curve) When
noise reduction is used. (Middle curve) When the original images were
used. The two curves along the bottom are the mean z-scores in the
background region. The background did not change significantly. The
background is the entire brain excluding a rectangular region around
the right and left hand activated regions. Noise reduction increased
the mean z-score by as much as 128%.

However, the methods of image acquisition might be changed to
speed up imaging or synchronize it with the other sources of phys-
iologic noise even at the expense of increased random noise if noise
reduction is employed. Random noise reduction is a useful tool that
can be used to improve fMRI studies when the random noise masks
the real activations.

lll. PHASE RECOVERY

There are many applications where the phase of the MR signal
encodes important information. For example, the phase can be used
to generate frequency maps. Frequency maps might be useful in
fMRI to separate the effects of large-scale susceptibility changes
caused by larger vessels from intravoxel susceptibility changes
caused by changes in capillary blood flow. The phase can also be
used to encode velocity information in phase-contrast imaging (Mo-
ran, 1982; Van Dijk, 1984). In elastography (Muthupillai and Eh-
man, 1996; Plewes et al., 1995; Chenevert et al., 1998), the phase
encodes the displacement of tissue produced by low-frequency
vibrations. In many of these cases, these measurements have rela-
tively low SNRs because they must be obtained with fast imaging
methods.

Both the real and imaginary parts of the complex image are
distorted by additive normally distributed random noise. The noise
becomes Rician only after the magnitude is taken (Macovski, 1996).
The real and imaginary parts of the signal can be filtered separately
with no added bias because the noise is independent. The uncertainty
in the phase angle at each pixel still depends on the magnitude of the
signal, but reduced noise decreases that uncertainty.

It is not uncommon to repetitively scan of the same physical
position. In elasticity measurements using phase-contrast estimates
of periodic motion, three scans can be taken to measure displace-
ment in all three directions. The magnitude of the image is identical
in all three scans; only the phase changes. Again as in the fMRI

experiment, the average provides a good estimate of each image so
we can use the same method of finding the optimum parameters for
the monotonic noise reduction algorithm.

A. Methods. Noise in the real and imaginary parts of the signal is
suppressed separately using monotonic noise reduction. The phase is
calculated from the resulting complex signal.

A one-dimensional simulation has been used to demonstrate the
potential. The phase varied linearly from 7 to —ar across the signal.
The total signal energy over the total noise energy is 0.38. The
standard deviation of the noise in both the real and imaginary
channels is 0.25 and the peak signal is one.

For the two-dimensional case, it was assumed that the magnitude
of the image was known. In that case, the average can be used to find
the optimum parameters in the filtration. The threshold and band-
width used to find the extrema were selected to minimize the
difference between the magnitude of the filtered image and the
magnitude of the average image. The Nelder—-Mead type simplex
search method implemented in Matlab@ was used to find the
optimum parameters for the monotonic noise reduction method. For
demonstration, we assumed that the magnitude was a clinical axial
image. The phase was simulated with a quadratic polynomial. Nor-
mally distributed random noise was added to both images to disturb
the phase and magnitude of the image.

B. Results. The one-dimensional signal is shown in Figure 7. The
standard deviation of the error in phase was reduced from 31 degrees
in the original noisy data to seven degrees following monotonic
noise reduction.

The two dimensional results also depend on the initial SNR in the
complex data. Figure 8 shows the phase of the original image, the
noisy image and the results of noise reduction. The mean error in the
phase was decreased by a factor of almost three from 58 degrees to
21 degrees.

IV. CONTRAST ENHANCEMENT

Contrast enhancement can be extremely useful in a wide variety of
applications. It can be used to improve the conspicuity of low-
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Figure 6. The mean z-scores of pixels in the region activated during
left-hand activity as a function of added noise. The order of curves is
the same as in Figure 5. Noise reduction increased the mean z-score
by as much as 143%.
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Figure 7. (a) The real and imaginary parts of the simulated signal. (b) The signal with added noise. (c) The signal recovered from the noisy data
using monotonic noise reduction. (d) The top plot is the phase of the unprocessed signal plotted with the true phase. The bottom shows the
phase recovered from monotonic noise reduction compared to the original phase is shown on the bottom. The noise is very accurately recovered
in regions where the signal is large enough. In regions where the signal is almost zero, the phase is not accurate.

contrast features making them harder to overlook. Contrast enhance-
ment has been used in mammography to make lesions more prom-
inent (Lu et al., 1994; Li et al., 1997). Contrast enhancement can be
used on digitized chest images (Rehm et al., 1990; Souto et al.,
1992; McNitt-Gray et al., 1993) and routine bone images (Ogoda et
al., 1997), or it could be used in radiation therapy to improve the
contrast of port films.

Contrast enhancement can be accomplished with histogram mod-
ification (Gonzalez and Wintz, 1977) or edge-based techniques
(Beghdadi and LeNegrate, 1989; Neycenssac, 1993). Histogram
equalization performs poorly with large uniform regions. Several
edge-based methods (Barrett and Swindell, 1981) can be reduced to
variations of the blurred-mask algorithm (Bednarek and Rubin,
1991; Jain, 1989). Blurred-mask or unsharp-mask methods can be
used to amplify different size features by different amounts. Other
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techniques that use the wavelet transform can amplify features of
different sizes by different amounts as well (Lu et al., 1994b). We
have used monotonic noise suppression in a blurred-mask method to
enhance contrast. The primary advantages of the monotonic method
are that it works well at lower SNRs, is not bandlimited, and does
not introduce ringing in the image. Ringing produced by undersam-
pling can be amplified and introduce false lesions. Unsharp-mask
methods also allow the basic intensity distribution to remain similar,
so the look and feel of the contrast-enhanced image are the same as
those of the original image.

A. Methods. We used monotonic noise reduction in a variation of
the blurred-mask method to enhance contrast. Two filtered images,
I, and L,, are obtained using the standard noise-reduction algorithm.
The more heavily filtered image, I, is used to reduce the baseline



Figure 8. The phase of the noiseless complex image is the upper
right image. The other two images in the top row are the phase of the
noisy image and phase error in the noisy image. The two images in the
bottom row are the phase of the monotonically noise suppressed
image and the phase error. The noise in the monotonically noise
suppressed image is reduced significantly. The error in the phase is
improved by a factor of almost three, from 58 degrees in the noisy
image to 21 degrees in the monotonically noise suppressed image.

variations in the image. The details to be enhanced are left in the first
image, I, and filtered out of the second image, I,. Those details are
found by subtracting I, from I,. However, the general brightness
pattern of the image needs to be maintained so the details are
amplified and added to I;:

L.=I+a( -1,

where a is the factor used to vary the contrast enhancement. Factors
of 10—15 are commonly used in our experience.

Features of different sizes can be amplified by different amounts
if multiple filtered images are obtained. LetI,, L, ..., I, be a series

Figure 9. The top curve is the phase of the 128th row of the
noiseless image shown in Figure 8. The middle row is the phase of the
128th row of the noisy image. The bottom row is the phase of the
128th row of the monotonically noise suppressed image.

of filtered images obtained using increasingly large thresholds so
each image has fewer small features than previous ones. Subtracting
pairs of adjacent images can separate the features of each size range.
Each subtracted pair can be amplified by any desired amount in the
contrast-enhanced image:

n—1

L=0L+ 2 a(l,- L)

i=1

Figure 10. Original chest image is shown on the left and the contrast enhanced image is shown on the right. The image was enhanced to
visualize the vessels in the lung and the pacemaker leads. The vessels in the lung and the sharp outlines of the vertebrae in the mediastinum
are all much more clearly visible in the contrast-enhanced image. The leads are visible in the lung and as they cross the mediastinum.
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B. Results. We enhanced the contrast in a digitized chest image
to improve the conspicuity of the vessels in the lung and the
pacemaker lines. The original and contrast enhanced images are
shown in Figure 10. It is clear that the vessels are well depicted and
there are no spurious signals. The vertebrae and the ribs are also seen
much more clearly in the contrast-enhanced image.

We also enhanced the contrast in a mammogram. Both the
original image and the contrast enhanced image are shown in Figure
11. The vessels throughout the breast are much more clearly de-
picted. A plot of the 150th column of both images is shown in Figure
12. The plot allows the reader to match features in the original image
with features in the contrast-enhanced image. No extra peaks were
introduced by the contrast enhancement, and the general intensity
distribution of the image was maintained.

V. CONCLUSIONS

Monotonic noise reduction is useful in situations where noise is
large, and it is especially useful when significant information about
the extrema exists. We have shown three examples of the utility of
monotonic noise reduction. Suppressing noise prior to calculating
the z-scores significantly enhances fMRI activation maps. The CNR
can be more than doubled. The average image provides an effective
way to estimate the optimum parameters for the noise-reduction
algorithm. The phase error can be improved significantly by filtering
both real and imaginary parts of the reconstructed image before
calculating the phase. If only the phase changes between multiple
measurements of the same physical region, the accurate estimate of
the magnitude of the image can be used to improve the estimate of
the phase even more. Finally, a simple robust method of contrast
enhancement using monotonic noise reduction was shown to be
effective in maintaining the general appearance of the image while
improving contrast significantly. There are many improvements that
can be made to the algorithm. Methods of reducing the noise leakage

Figure 11. A mammogram is shown on the left and the contrast
enhanced mammogram is shown on the right. The vessels and ducts
are much more clearly delineated.
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Figure 12. Plot comparing of the 150th column of the original and
contrast enhanced breast images. (A) The original image. (B) The
contrast enhanced image. (C) Rows 100-200 of the original image in
greater detail. (D) Rows 100-200 of the contrast enhanced image for
comparison. The general intensity distribution is maintained. The
expanded views show that each peak in the contrast enhanced image
corresponds to a peak in the original image. There are no new peaks
and the position of the peaks remains the same. No spurious features
are introduced and there is no ringing to interfere with the vessels.

at boundaries are particularly promising. There are also many vari-
ations of the basic method that can be made to adapt it to specific
situations.
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_ Abstract

A novel method of reducing noise in images is presented. The significant extrema (maxima and
minima) in the image are selected using a simple low pass Fourier filter. The method forces the pixel
values in the image to vary monotonically between the selected extrema. For example, the pixel values
in the filtered image should decrease monotonically in all directions from an isolated maximum. Because
the algorithm that performs the monotonic fits is one dimensional, we approximate monotonic change in
all directions by doing monotonic fits along line segments throughout the image. The filtering operation
on each line segment replaces the pixel values on that segment with a monotonic sequence that fits the
original pixel values best in a least squares sense. Monotonic change is enforced along line segments in as
many directions as desired. The method is simple, reasonably fast and quite stable. Good results can be

obtained for images with SNR’s as low as 0.5.
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I. BACKGROUND

There are many methods of removing noise from images. The basic idea is almost always to represent
the signal and noise in a basis that separates the true signal from the noise as completely as possible. In
Fourier filters, the noise is assumed to be dominant in the high frequencies and the signal dominant in
the low frequencies so removing high frequencies removes mostly noise. However, removing or damping
the high frequencies produces bandlimited blurring. Wavelet denoising (1, 2, 3, 4, 5, 6] adds another
twist by allowing the bandwidth passed to be different at different positions in the image. The high
frequencies are allowed to pass where edges have been identified or are likely and the high frequencies are
more strongly suppressed where edges are not likely. Edges produce extrema in the wavelet transform
domain so a wider bandwidth is passed around large values of the wavelet transform. One of the keys
in wavelet denoising is deciding when an edge is present and when the large wavelet response is from
noise. An alternative method of preferentially suppressing noise is presented here. Instead of identifying
extrema of the derivative as in wavelet denoising, the extrema of the signal itself (peaks) are found; the
signal is then forced to change monotonically between the extrema. The method should be more robust
than wavelet denoising because averages are more stable than differences. However, identifying the correct
extrema is again the key to the performance of the method. The filter is made possible by an elegant
algorithm due to Demetriou and Powell that finds the monotonic series that fits data points best in a least
squares sense [7]. It basically averages large enough groups of adjacent points in the series to achieve a
monotonic progression. Monotonically decreasing series can be found by reversing the order of the data.
It is a robust and relatively fast method. Our noise reduction method for images has two parts: selecting
the important extrema and forcing monotonic change between those extrema. Extrema selection is best
done in two dimensions because extra stability is gained by smoothing in both dimensions rather than
only one. The process of forcing monotonic change in all directions is accomplished by forcing monotonic
change along many line segments. We will first look at the relevant properties of the algorithm that forces
monotonic change along a single line segment. Then we will describe the two dimensional algorithm in

detail, show some results, give some applications, and propose future improvements.

I1I. ONE DIMENSIONAL EXAMPLES

The values of a function at points between two adjacent extrema must vary monotonically essentially
by definition. Therefore, a function of one variable in additive noise can be retrieved by identifying the
positions of the extrema and fitting the points bounded by each pair of adjacent extrema to a monotonic
function. For any segment bounded by a pair of adjacent extrema, the monotonic series that fits the
points best in a least squares sense can be found using the Demetriou and Powell algorithm [7]. This
algorithm has several very interesting properties. The result is not just a fit to a limited set of basis

functions. Any monotonic series can be recovered. The result is not bandlimited; edges are not blurred.




The algorithm takes the first element of the series as the starting value and advances through the series
element by element. If an element in the series is smaller than the previous element, the algorithm averages
past points in the series to bring the past values down and the present element up enough to maintain
monotonic increase. The algorithm is fast, works in place so memory requirements are minimal and is
relatively robust. Figures 1to 4 demonstrates the important properties. Figure 1 shows a simulated signal
made up of three boxcars with moderate added noise. The local SNR over the boxcars is approximately
ten. The ratio of the total signal energy to the total noise energy is six. This is generally a relatively
poor SNR for medical imaging; a good, crisp MR image generally has a SNR of at least 80. The blurred
signal and the extrema selected are shown as well as the final noise suppressed signal. Two features of the
noise suppressed signal should be noted: the edges are not blurred at all and there are spurious peaks at
the boundaries between monotonic segments. Demetriou and Powell’s algorithm is very happy with sharp
edges; they are not blurred at all. This is obviously very important because edges are among the most
important features we use to interpret images. Blurring is also the most limiting property of many noise
reduction techniques especially the Fourier based methods. Wavelet based noise suppression methods
have been promising largely because they promise to leave edges unblurred. The spurious peaks at the
boundaries between monotonic segments are the only deformation of the signal resulting from the noise
suppression. It is caused by the lack of averaging at the ends of the segments. A large value caused by
noise in the center of the segment will be balanced by random small values on both sides of it while a
large value caused by noise at the end of the segment satisfies the monotonic criteria and is not changed.
Another way to see the effect is to run the algorithm over a series of random values. Some part of the
noise energy is monotonic and it is primarily at the ends of the segment as shown in Figure 5. That
monotonic part of the random noise can not be distinguished from real monotonically increasing signal.
Figure 2 shows the results at very low SNR’s. The noise has a standard deviation of one and the signal
peaks have a height of one. The SNR over the peaks is one and the ratio of the total signal energy to the
total noise energy is 0.6. The peaks are recovered and the edges are sharp. The leakage of noise at the
boundaries between the segments is much more pronounced than at higher SNR, as might be expected.
Figure 3 demonstrates the importance of extrema selection. All three peaks were recovered when the
thresholds were properly selected. However, if the threshold for extrema selection was too low, too many
extrema were selected and extraneous peaks were introduced as in Figure 3B. If the threshold for extrema
selection was too high, too few extrema were selected and features with small energy were lost as the 6
pixel wide peak was lost in Figure 3D. As the SNR was reduced to extremely low levels, approximately
0.1, the noise leakage at the boundaries between monotonic segments dominates the result as shown in
Figure 4. Features that have a large enough area were still found and the sharp edges were recovered
effectively. However, the noise leakage at the boundaries between monotonic segments overwhelms the

recovered signal. The noise leakage at the boundaries can be reduced by averaging the monotonic fits




obtained with several (5 to 11) boundary points near the maximum. If the average is weighted by the error
between the data and the fit, sharp peaks can still be recovered. However, computation times increase

enough to discourage use of this technique on images.

III. METHODS

The first method of processing images to try is to simply process the rows of the image, then rotate
the result and process the rows again. Then iterate by rotating the result and processing the rows until
nothing is changing and quit. This simple method works pretty well but it needs to be modified a bit

because of two directional effects.

A. Directional Effects

The first is that there are many kinds of extrema in two dimensions. It is a directional property in two
dimensions; i.e., a point can be an extrema in one direction but not in another. For example, a saddle
point is an extrema in all directions but two. Therefore, the extrema must be determined independently
for each direction processed in an image. The second directional effect is somewhat more subtle. When an
image is processed in multiple directions, most of the noise is suppressed in the first direction processed.
The leakage of noise at the boundary between monotonic segments is greatest perpendicular to the first
direction processed and much less in other directions. The results of making the columns monotonic first
and then the rows is different from those obtained by making the rows monotonic first and then the
columns. If this effect were limited to the edges of the image it would be tolerable but it occurs at each
and every boundary between segments throughout the image. The leakage of noise at boundaries leads to
the widening of a peak perpendicular to the first direction made monotonic. The effect is demonstrated
in Figure 6. Just noise was processed to show how it is blurred. If the rows are made monotonic first, the
rows stay essentially monotonic after the columns are made monotonic. Therefore, each direction needs

to be made monotonic only once.

B. Algorithm

Our method of processing images attempts to handle these directional effects. An intermediate image
was found for each angle used. To obtain the an intermediate image, the original image was rotated
to the appropriate angle. The rotated images were obtained by interpolating to a rotated grid using
cubic B-splines [9, 8]. The rotated version of the image was blurred using a simple Gaussian filter in the
Fourier domain. The extrema along the rows and along the columns of the blurred image were identified.
The two sets of extrema were examined and those that differed from adjacent extrema by less than the
threshold were eliminated. Each row of the image was made monotonic between extrema. Then the
columns of the row processed image were made monotonic between extrema. The row-column processed

image was averaged with the column-row processed image to obtain the intermediate image. Making




the image monotonic in two directions is sufficient to suppress most of the noise and keep most of the
features. Processing the image at more angles to get the intermediate image takes too much processing
time. Each intermediate image had the noise leakage primarily perpendicular to the first direction made
monotonic. To remove the noise leakage, intermediate images at several angles were averaged together.
Actually the intermediate images were least squares fit to the original image to obtain the final processed
ima'ge. A simple average can also be used instead of a least squares fit. The final processed image is.

almost monotonic between extrema in all directions and contains no preferred directional effects.

IV. RESULTS

The preliminary results are very promising. Noise can be suppressed significantly. Good quality images
can be extracted from noise that would otherwise make the images of very limited usefulness. The first
example is an MRI of a phantom shown in Figure 7. The imaging technique selected produced very
noisy images. The ‘true’ image was obtained from averaging 64 of the images to suppress noise through
averaging. Four angles were used in the noise suppression. The edges and most of the small features
are recovered well. The first two rows of small pins in the black field on the upper left section of the
phantom are retained. The edges remain sharp. However, the fan shaped resolution pattern is less well
seen. Smaller parts of the fan pattern could probably be visualized if more angles were used. Most of
the noise remaining in the noise suppressed image is leakage at the boundaries between segments. The
second example is of a functional MRI (fMRI) image. Functional MRI is a procedure that identifies areas
of the brain that are used to perform mental tasks such as the motor strip or the areas used for different
kinds of memory. Surgeons need such information to avoid critical areas of the brain when operating. It
is also important to understand damage and reorganization of the brain following injury such as stroke
or trauma. In fMRI many sequential images of the brain are obtained during a mental task and during
rest from that task. The area of the brain that is active during the task has very small signal intensity
changes that correlate with the task being on and off. These signal changes are caused by increased blood
fiow during activation and are only around two percent of the signal. Noise or patient movement can
render the study inconclusive. The image shown in Figure 8 is a single image from an fMRI study. The
monotonic noise suppression produces excellent results. Eight angles were used in the noise suppression.
The noise suppressed image has almost all the features present in the original but the noise is reduced
significantly. The gray and white matter can also be more easily segmented in the noise suppressed image.
The regions of similar signal intensity are grouped very well. The third example is an T1 weighted MR
image of a brain study. One of the important features of T1 weighted images is to differentiate gray and
white matter. The gray matter is the less bright shell of tissue forming the cortical surface. The brighter
white matter is inside the gray and the dark cerebrospinal fluid that cushions the brain is between the
gray matter and the skull. Eight angles were used in the noise suppression. Noise was added to the

image to reduce the SNR from 80 to 16 and more noise was added to decrease the SNR farther to 4. The




monotonic noise suppression increased the SNR from 16 to 85 and from 4 to 30. The gray-white matter

separation is recovered well.

A. Applications

There are many potential applications of monotonic noise suppression but two applications are the most
promising. Segmentation is the most natural. Areas that have similar signal intensities are grouped into
contignous regions very effectively. Recovery of images in very high noise is the other natural application
because this technique works well at high SNR’s and at very low SNR’s. Most noise reduction methods do
not perform well at low SNR’s. For example, in mammography we are using monotonic noise suppression
as a preprocessing step for a watershed algorithm that is used to segment the digitized mammograms.
Monotonic noise suppression can be adjusted to remove the small features that tend to make the watershed

algorithm oversegment.

B. Future Improvements

This technique is still being actively developed and there are many improvements to be made. Many
of the improvements necessary require better theoretical understanding. For example, how many angles
need to be used to suppress noise adequately? The answer will depend on the area of the regions between
extrema; more angles will be needed for larger areas. How fast can extrema change with angle? Most
extrema are found if only four angles are used. Can the leakage at the boundaries be suppressed without
eliminating smaller features? The most important improvement to make is to make the selection of extrema
more robust and automatic. The same tricks that are used to find maximum gradient points in wavelet
denoising can be applied here as well. For example, tracking extrema across multiple scales and using
continuity would probably help. Also estimating the cutoffs that determine the extrema automatically
from the estimated SNR would help. Now the selected extrema are shown on the screen to select the

correct cutoff parameters.

V. CONCLUSIONS

Forcing monotonic change between extrema is a very promising noise suppression technique. Edges are
not blurred and it works well over a wide range of SNR’s. As the SNR drops, features that have less
energy than the noise spikes are lost. The key to recovering the image accurately is to identify the correct

extrema.
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Fig. 1. An example of suppressing noise on a line segment with a simulated signal and normally distributed
random noise. The signal is three boxcars. The height of the boxcars is 1. The boxcars, from left to
right, are 35, 45 and 6 pixels wide. The signal with added noise is shown in A. The standard deviation
of the normally distributed random noise is 0.1. The Gaussian smoothed signal with the extrema
selected are shown in B. Standard deviation of the Gaussian is 4 percent of the total bandwidth and
the extrema were required to change by 20 percent of the maximum signal. The result of forcing
monotonic change between the extrema is shown in C. The original signal before noise was added is

shown in D for comparison.
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nal as in Figure 1 was corrupted with

Fig. 2. The result when the noise is much larger. The same sig

noise with a standard deviation of 1 instead of 0.1. The format is the same as in Figure 1.




Fig. 3. The result of suboptimal selection of extrema. Figure 2 was reconstructed with extrema that
were larger than 15 percent of the maximum. Figures A and B show the result of selecting extrema
larger than 10 percent of the maximum. Figures A and C correspond to B in Figure 2 and Figures
B and D correspond to C in Figure 2. The lower threshold result in two new extrema seen to the far
left of the segment. That extra extrema produces a rather large peak in the final result. Figures C

and D show the result of selecting the extrema larger than 20 percent of the maximum. The extrema

over the 6 pixel wide spike in the signal is lost and does not appear in the final result.
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Fig. 4. The result with extremely large noise. The same signal as in Figure 1 was corrupted with noise
with a standard deviation of 10. The format is the same as in Figure 1. Figures A-D are scaled the

same.
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Fig. 5. The result of forcing monotonic change on normally distributed random noise shows the leakage
of noise at the boundaries between monotonic segments. The random series was monotonically fit
to two segments: the first increasing and the second decreasing. There is always a false peak at the
boundaries between monotonic segments because the monotonic fit allows negative noise to pass at
the beginning of the segment and positive noise to pass at the end of an increasing segment. In the

middle of the segment, values to either side are enough to average out the positive and negative noise.
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Fig. 6. A field of random numbers with standard deviation 1024 was made monotonic along the columns
first and then along the rows. The center row were the maxima when the columns were processed and
the central column were the maxima when the rows were processed. The result shows the directional

blurring of noise perpendicular to the direction first processed.
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Fig. 7. Figure A shows an MRI image of a phantom. The imaging technique used produced a very poor

SNR image, shown in Figure A. Figure B shows the results of noise reduction using monotonic fits
between extrema. Figure C shows a Fourier filtered image with the same SNR as in Figure B; the
blurring limits the usefulness of the image. Figure D shows the average of 64 acquisitions averaged

together to reduce noise. The SNR in Figure D is 8 times that in Figure A.
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Fig. 8. Figure A shows the original axial MR image and Figure B shows the results of forced mono-
tonic noise suppression. The parameters were set to produce uniform areas that could be useful in

segmentation. The SNR is improved significantly by forced monotonic noise suppression.
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Fig. 9. Figure A shows the original T1 weighted sagital MR image that has a relatively high SNR,
SNR=80 within the brain. Figures B and C show the original image with added normally distributed
random noise, SNR=16 and SNR=4 within the brain for Figures B and C respectively. Figure D
shows the Gaussian filtered image with the selected extrema superimposed. Figure E shows the result
of forced monotonic noise suppression on Figure B. The SNR increased from 16 to 85. Figure F shows

the result of monotonic noise suppression on Figure C. The SNR is increased to from 4 to 30.




Monotonic Noise Suppression Used to Improve
the Sensitivity of fMRI Activation Maps

John B. Weaver

We have introduced a new method of removing noise
from images that identifies significant extrema and
forces the pixel intensities between any two extrema
to change monotonicly. The method has some similari-
ties to wavelet denoising methods we worked with
several years ago but is generally more stable and is
effective on images with lower SNR's. In this paper the
method of monotonic filtering is used to increase the
sensitivity in functional magnetic resonance imaging
{(fMRI) studies. We have used the increased sensitivity
to improve the temporal resolution in fMRI studies by
roughly a factor of six. A motor activation study was
acquired with single slice 256 x 256 pixel T2* weighted
images; six cycles of finger tapping were acquired.
Each cycle consisted of five images of rest followed by
five images of right hand finger tapping followed by
five images of left hand finger tapping. The z-scores
were calculated and used as the activation map. The
left and right activations were both clearly visible
when all six cycles were used in the analysis. However,
no definitive activation was seen for any one cycle.
When the original 256 x 256 images were averaged

down to 64 x 64 pixel images before calculation of the

z-scores, the activations were partially identified. When
the original images were filtered using the monotonic
noise reduction algorithm, the left activation was
clearly visible in three of the six cycles and partially
visible in two others. The right activation was partially
visible in 4 out of 6 cycles. Optimized noise reduction
should improve the results significantly. The ability to
use a single cycles is very important in fMRI studies
because many stimuli are more difficult to maintain
over many cycles and because complex processes
such as in cognitive or memory activity do not have
simple responses.

Copyright © 1998 by W.B. Saunders Company

OISE REDUCTION has many applications:

eg, as a preprocessing step for many image
interpretation algorithms, in segmentation, in con-
trast enhancement among many others. Noise reduc-
tion can be seen as finding the features in the image
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and preferentially separating the features from the
noise in some way. Fourier filters reduce the high
frequencies where noise is assumed to be dominant
and leave the low frequencies where signal is
assumed to be dominant. The undesired result is
bandlimited blurring of real features. Wavelet de-
noising'-6 improves the situation by allowing the
bandwidth passed to be increased around edges in
the image and decreased in flat regions. This
mitigates the bandlimited blurring if the edges can
be found in the image. Indeed the key to wavelet
denoising is correctly identifying the edges. Shrink-
age algorithms assume that large wavelet coeffi-
cients are likely to be a result of an edge and
smaller wavelet coefficients are likely to be noise.
Therefore, the larger coefficients are kept and the
smaller ones are suppressed.

Functional magnetic resonance imaging (fMRI)
looks for small changes in blood flow that are
produced by mental activity associated with mental
tasks. The signal changes are on the order of the
noise in MR images. They are generally around
3%.7 Identifying these changes in MR images with
comparable noise is a difficult task. The signal can
only be found by averaging over many cycles of the
task. However, many tasks are difficult to consis-
tently sustain over multiple cycles; e.g., cognitive
tasks or other tasks with multiple parts and com-
plex activations. We are using monotonic noise
reduction to reduce the number of activation cycles
required to identify the region activated.

METHODS
Monotonic Noise Reduction

Monotonic noise reduction®? finds the significant extrema,
both the maxima and the minima, and forces monotonic change
between the extrema. The procedure is best described in one
dimension first and then extended to two dimensions. The
significant features are the extrema in a slightly blurred image
that are different from adjacent extrema by a user defined
minimum value. The selection of the correct extrema is of
critical importance. When the significant extrema have been
selected, the signal must by definition change monotonically
between any pair of adjacent extrema. Monotonic change is
forced by using an elegant, simple algorithm for finding the
monotonic series of numbers that fits the original series best in
the least squares sense.! The monotonic fit averages large
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Fig1. A flow chart of the steps taken
to obtain the extrema in ali four direc-
tions that are used in the monotonic
noise reduction algorithm. The image is
blurred using a simple Gaussian filter in
the Fourier domain to average out small
extrema. Then the pixels are reordered
into strings that follow the four primary
directions and the extrema are selected
in each reordered string of numbers.
Only extrema that are different from
adjacent extrema by more than a thresh-
old are included in the four final sets of
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N

get filtered

image

extrema. The user selects the width of . . . .
the Fourier filter and minimum differ- Extrema in Extyema in Dlagona‘ Dlagonal
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is rejected as noise or is included in the Direction Direction Lower Right Upper Right
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Fig2. A flow chart of the steps taken in monotonic noise reduction. The pixels in the original image are reordered along the four
primary directions and the pixel values between extrema are fit to monotonic functions. The resulting series of pixel values are
he first direction and the pixel values between that set of extrema are fit to monotonic
tunctions. The resulting four images are averaged to form the final filtered image.

reordered in the direction orthogonal to t|
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Fig 3. The fifth resting image in the raw data from a motor
activation study.

enough groups of adjacent points in the series to achieve a
monotonic progression. It is robust and relatively fast. The
resulting monotonic series is not just a fit to a limited set of basis
functions. The monotonic series is not bandlimited so edges are
not blurred.

The extension to two dimensions is complicated because an
extrema in one direction is not necessarily an extrema in another
direction. For example, pixels along a ridge will be extrema
perpendicular to the ridge but not along the ridge. The method
we use is to find the extrema in four directions as in Fig 1 and
filter the image separately in four directions: horizontal, vertical,
diagonal upper-left to lower-right, and diagonal lower-left to
upper-right. There are four intermediate images formed by first
filtering the original image in each of the four primary direc-
tions. The intermediate images are then filtered in the direction
perpendicular to the first filter direction. Filtering in other
directions can be done but produces little change. Once an
image has been filtered in two orthogonal directions, it is
essentially monotonic in the other directions. too. However, the
four intermediate images are all different valid solutions that are
essentially monotonic in all four directions. We average the four

Fig4. The results of monotonic noise reduction on the fifth
image in the motor activation study. The noise is significantly
reduced from that in Fig 3.

JOHN B. WEAVER

Fig 5. The fifth image in the motor study after it has been
averaged down to a 64 x 64 image. Each pixel is the average
of sixteen pixels in the full resolution image. The noise is
reduced but the resolution suffers.

to obtain the final filtered image. The procedure is outlined in
Fig 2.

We have tried a weighted least squares fit of the four to the
original image but it is a little more unstable and does not
produce a noticeably better image. We have also filtered the
image in more than four directions but the most improvement in
image quality is obtained in the first four directions so we
usually limit ourselves to four directions.

JMRI Protocol

An axial plane four cm below the apex of the cranium was
imaged. Six cycles of rest and motor activation were obtained.
Each cycle of images consisted of five resting images followed
by five images taken during tapping of the right hand followed
by five images taken during tapping of the left hand. Each
gradient echo image was a 256 X 256. 24 cm field of view,
image with TR of 70 ms and TE of 40 ms. The images were
strongly T2* weighted to identify BOLD contrast changes.

Fig6. The average of all 90 images from the study provides
a relatively noise free comparison. The noise and resolution
resemble that in the monotonically filtered image in Fig. 4
more closely than that in the original image in Fig 3 or that in
the reduced resolution image in Fig 5.
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Fig 7. The full resolution 256 x 256 pixel veference activation maps for the right hand motor task (on the left} and the left hand
motor activation task {on the right). The map is the correlation with the right hand motion over the standard deviation of the
intensities at that pixel position. All six cycles were used to obtain the activation maps. The activations are clearly present in the

expected locations.

Activation Maps

Simple z-scores for each pixel were used to identified
activated regions. The standard deviation of the ninety images
was used as a measure of the total variation in signal. To obtain
the reference activation maps all six cycles were used to obtain
the z-scores. To obtain the signal correlated with right hand
finger tapping. the average of the rest and left hand tapping was
subtracted from the average of the right hand finger tapping. The
activation map for the right hand motor task was the ratio of the
signal correlated with right hand finger tapping over the total
variation in signal. Similarly, the activation map for the left hand
motor task was the ratio of the signa! correlated with left hand
finger tapping over the total variation in signal. No realignment
of the images was done.

Fig8. The full resolution 256 x 256 pixel activation map obtained using the fourth task cycle. The right hand motor task is on the
left and the left hand motor activation task is on the right. No activation can be identified without reference to the maps in Fig 7.

There are a few pixels in the motor areas but not enough to differenti

Single Cycle Tests

The reference activation maps were obtained with all six task
cycles. The reference activation maps were used as the gold
standard showing the true regions activated which were taken to
be the motor centers, During any single task cycle there could be
transient activation in other areas or lack of activation in the
regions identified in the reference activation maps. However, the
regions shown in the reference activation maps do show the
most likely areas activated.

The activation maps for each cycle were calculated and
compared to the reference activation maps. The images were
processed in two ways to average out noise in the images and
help make single cycle activations definitive. First. the images
were averaged down from 256 by 256 pixels to 64 by 64 pixels.

ate the motor centers from other areas in the maps.
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Fig9. The activation maps obtained from the full resolution, monotonically filtered images when only the fourth task cycle was
used. The right hand motor task is on the left and the left hand motor activation task is on the right. The left hand activation is clearly
visible but more dispersed than in the reference activation maps. This could be the real activation that was averaged away in the
composite activation maps or it could be the result of noise. The right hand activation is visible when compared to Fig 7 but itis not
as clear as the left hand activation.

The averaging reduced noise but also reduced the resolution. Fig 6 for comparison. The noise that is apparent in

Seconc.!. the images were pr(?cessed with monotonic noise Fig 3 is much reduced in Fig 4 without loss of

reduction. The resolution remained the same as in the original e . . .

imaces significant features. The resolution in Fig 5 suffers
i significantly.

Figure 7 shows the reference activation maps
obtained with all six task cycles. The right and left
motor centers are clearly visible. The locations of

RESULTS AND DISCUSSION

The fifth image of the study is shown in Fig 3.

The same image after monotonic noise reduction
and after averaging are shown in Figs 4-5. The
average image of the 90 image study is shown in

both motor centers are also in roughly the same
locations as in most subjects. The signal that
correlates with the activation is around seven times

Fig 10. The 64 by 64 pixel, activation maps obtained from the reduced resolution images when only the fourth task cycle was
used. The right hand motor task is on the left and the left hand motor activation taskis on the right. The left hand activation is clearly
visible. The right hand activation is not visibly different from other areas in the map.




MONOTONIC NOISE SUPPRESSION FOR FMRI

Fig 11. The full resolution 266 X 256 pixel activation map obtaine
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P

d using the fifth task cycle. The right hand motor task is on the

left and the left hand motor activation task is on the right. No activation can be identified. Regions of activation can only be seen if

compared to the known activation mapsin Fig 7.

the standard deviation in the activated pixels so the
confidence in the activations is high.

The fourth and fifth single cycle activation maps
are shown in Figs 8-13. The other single cycle
maps are similar. No definitive activation was seen
for any one cycle without filtering or averaging the
images prior to calculation of the activation map.
The activations in Figs 8 and 11 can be seen in
retrospect if compared to the six cycle activations
in Fig 7. The activation maps obtained from the
monotonically filtered images in Figs 9 and 12
show the left hand activation very clearly. The right

hand activation can be seen retrospectively if
compared to the six cycle activation maps in Fig 7.
The reduced resolution activation maps in Figs 10
and 13 are similar to the monotonically filtered
activation maps. The left hand activations are
visible but the activation for the right hand task is
even less visible than in the maps obtained from the
monotonically filtered images. The reduced right
hand visibility might be a partial volume effect.

A method to optimize the monotonic filter set-
tings is needed to improve the results. The filter
settings were set arbitrarily to what produced a

Fig 12. The activation maps obtained from the full resolution, monotonically filtered images when only the fifth task cycle was
used. The right hand motor task is on the left and the left hand motor activation task is on the right. The lefthand activation is clearly
visible but again it is more dispersed than in the reference activation maps. The right hand activation is also only visible when

compared to Fig 7.
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Fig13. The 64 by 64 pixel, activation maps obtained from the reduced resolutionimages when only the fifth task cycle was used.
The right hand motor task is on the left and the left hand motor activation task is on the right. The left hand activation is clearly
visible. The right hand activation is not visibly different from other areas in the map.

visually good image. Better results can probably be
obtained with optimal filter settings.

CONCLUSIONS

Forcing monotonic change between extrema is a
promising noise suppression technique. Edges are
not blurred and it works well over a wide range of
SNR's. As the SNR drops, features that have less
energy than the noise spikes are lost but edges are
not blurred. The key to recovering the image
accurately is to identify the correct extrema.

We used the monotonic filtering method to

reduce the noise in functional magnetic resonance
(fMRI) images. It improves the SNR enough to
identify motor activations from a single task cycle
rather than multiple cycles in some cases. The
increased visibility of activated regions is compa-
rable to that obtained by averaging the pixels in the
images to reduce the noise. However, the resolution
is not degraded when monotonic noise reduction is
used as it is when the pixels are averaged. Because
monotonic filtering is effective at much lower
SNR's than the common wavelet filtering methods,
it is particularly useful in fMRI studies where the
noise is relatively high.
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Tissue elasticity is thought to hold great promise for
- the diagnosis of cancer because it is often harder than
normal tissue. MR based methods encode the static .
displacements [1] or dynamic displacements [2,3] in the
phase and reconstruct the elasticity from the motion.

We have used dynamic displacements because-
density and frequency effects can be evaluated as well
as the elasticity. The gradient echo sequence below was
implemented on a GE MRI. The RF amplifier was
blanked during the 100Hz sinusoid on the RF channel.
It was fed into the power amplifier for the piezoelectric
actuator stacks. The 100Hz sinusoidal gradients
encoded the harmonic displacement. The 3 gradients’
allowed displacement in all 3 directions to be measured. .
The relative phase between the gradients and the
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motion was controlled very precisely by changing the".
starting time of the gradient pulse. Four starting times’
were used and phase at each position was fit to: .
¢=C+Acos(@t+P). The first term is an irrelevant.
"constant. The amplitude and phase of the cos term.
describe the harmonic motion completely.

The motion was produced by three stacks of
piezoelectric actuators. Three actuators were used to
get sufficient displacement. Three stacks gave
mechanical stability. The system was current limited
with one audio amplifier; in independent measurements '
the device produced 24 micron displacements. The
specifications state that the stacks can provide 42
micron displacements with sufficlent current. The:
‘device generates.large forces which is an important
-*advantage.

“Fig. 11 stacks of piezoelectrlc actuators mounte
‘tovibrate a box... .. ...

Discussion: Because the measured displacement
_patterns match the calculated patterns quite well, we
are confident that we have made accurate
measurements of the motion and accurate calculations
of the motion. The magnitude of the simulated
displacements are larger than the measured values.
;Damping, transient effects, and changes in Poissons_ ) :
-ratio could all account for the variation. U -~ 'Fig. 2:

casured displacement amplitudes in the X
and Y directions in a homogeneous agar gel are shown '

. References: ‘ . in Figs. a and b. The TR=300ms, TE=58ms, NEX=2
~ 1) T.L. Chenevert et. al.: Mag. Reson. Med. 39(3):462 1998. * SL=lcm, FOV=8cm, resolution is 128 x 256. Figs. c

2) R, Muthupillai et. al.: Science Vol. 269:1854, 1995.
3)°J. Bishop et. al.: JMRI 8: 1257, 1998.

and d show the forward simulation for that geometry
..and matertal.




MRI Elastography Reconstruction Using A Harmonic Elastodynamic Model

Elijah Van Houten, Michael I. Miga, Francis E. Kennedy, John B. Wéa;ve'r, Keith D. Paulsen

Abstract

Recently, imaging modalites such as ultrasound and magentic
resonance (MR) have been used to measure subsurface dis-
placements in tissue and several inversion schemes have been
proposed to solve for stiffness properties. We have developed
a finite element based inversion scheme which operates in a
sweeping fashion on small overlapping subzones of the tissue
space. The zone approach allows for a high degree of spatial
discretization while maintaining algorithm convergence. Addi-
tionally, we are using a harmonic elastodynamic tissue model
as the basis of our inversion and have shown accurate recon-
struction simulations with up to 15% added noise.

Introduction

Palpation, although effective at diagnosing large near-surface
cancerous tissue, is not an adequate technique for detecting
small deep tumors. However, based on the success of palpa-
tion, the high contrast in stiffness between healthy and can-
cerous tissues remains an impetus for developing an elasto~
graphic imaging modality. MR and ultrasound elastography

are the first imaging modalities to provide subsurface displace-.

ment data, which consequently provides tissue strain informa~

tion, that can be used in an inverse method to recover stiffness -

properties.

Methods
Previous work has focused on estimating stlffness propertxes by

calculating local wavelengths resulting from shear excitation of

the tissue [1]. More recently model based reconstruction has

been used in this same context [2]. It has been our experience

that shear wave excitation of tissue is limited due to attenu-

ation. In our approach, we use longitudinal harmonic waves

which ultimately generate standing shear waves deep within
- the tissue. .

The equations describing the elastodynamic response of soft
tissue under an applied harmonic deformation are,

d%u

P oz

where 7 is the stress tensor, u is the displacement vector and

p is the tissue density. Assuming that the material is excited

harmonically at frequency w, these equations can be solved in

the frequency domain,

=V T ‘ 1)

U=V T )

where u = Ue™*. Depending on thg constitutive relationships

assumed between stress and strain, the presence of damping "

can be incorporated; however, for this discussion we have as-
sumed Hookean dependence with a constant Poisson’s ratio
of v = 0.49; thus leaving Young’s modulus the only unknown

in the domain (recall that displacement data, u, is measured .-

from the imaging technique). .

The inversion problem is a nonlinear Newton-based itera-
tive scheme which minimizes the square of the error between
measured and model-predicted values for each zone and solves
for the distribution of Young’s modulus. The zone domain is
radially shaped and determined by a hierarchial ordering of
local residual errors which cover the entire mesh (zone bound-
ary conditions are determined: from the MR dataset). After

... . "“Thayer School of Engineering, Dartmouth College, HB8000, Hanover, NH 03755

all areas of the mesh have been iterated on a specified number
of times (zone iterations vary due to overlapping capability), a
global forward problem is executed using the updated modulus
distribution and the zone process begins again. The main ad-
vantage of this technique is that it allows sufficient discretiza-
tion to resolve the wavelengths found in soft tissue harmonic

-motion.

Results & Discussion

Using this inversion scheme, a simulation was performed on
a breast cross-section with complex phantom shapes of vary-
ing contrast." Random noise (up to 15 % of original displace-
ment) was added to the forward solution data to simulate sig-
nal degradation in the MR measurements. This noisy solution
is then operated on by the inversion algorithm described pre-

‘viously. Figure 1 shows the results with an initial guess of a

uniform Young’s modulus of 7000 Pa. The inversion process

b

" Figure 1: Breast computational phantom/reconstruction with

regions of varying contrast (2x, 5x, 10x): (a) phantom Young’s
modulus distribution, (b) mverse solution with 15% random

" noise added to data.

consisted of 18 sweeps over the entire space, each sweep using
roughly 1000 zones of about 150 elements and 100 nodes to
insure that every node within the discretization was operated
on at least once. Overall the results shown in our simulations
are extremely encouraging. This work was supported by NIH
grant R01-NS33900 awarded by the NINDS.
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Contrast Enhancement Using Monotonic Noise Suppression Methods
John B. Weaver, Department of Radiology, Dartmouth-Hitchcock Medical Center

This work was supported by DOD-AMRD, DAMD17-96-1-6119

We introduced monotonic noise suppression and applied it to improving fMRI activation
maps. Now we are using monotonic noise suppression to increasing contrast in images. Almost any
noise reduction algorithm can be used to enhance contrast. Monotonic noise suppression has some
advantages over the wavelet denoising based contrast enhancement method we introduced
previously.

The basic idea is to subtract two versions of the image obtained by using two different noise
thresholds. The first image is filtered to remove just the noise. The second image is filtered to
remove noise and small features leaving only the large features. When the second image is
subtracted from the first, the large features are subtracted away leaving the small features. Actually
the second image times some factor less than one is subtracted; so the large features are reduced
rather than eliminated. The amount of contrast enhancement can be changed by changing the linear
combination of filtered images.

Two features of the monotonic noise reduction method make it attractive for this application.
First, it is not band-limited. Edges are not blurred at all. There is no reduction of sharpness in the
contrast enhanced image. Second, there is no ringing caused by undersampling. When a noise
reduction method that introduces ringing into the image, the ringing can be amplified and distorted
to look like small features in the contrast enhanced image. Fourier noise reduction methods are
infamous for introducing ringing and wavelet denoising also introduces ringing although to a lesser
extent.
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Contrast Enhancement Using Monotonic Noise Suppression Methods
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Contrast enhancement requires the balance of two competing features: making small changes in
the image bigger and controlling the growth of noise. There are two general types of techniques that
have been used in the past to enhance contrast. The first is contrast equalization. However, it does
not do well when there are big bright and big dark areas with low contrast objects in each because
the large bright and dark areas dominate the histogram and do not help the low contrast objects in
between. (See Gonzalez and Wintz, Digital Image Processing, Section 4.2.3)

The second class of contrast enhancement techniques that have been used in medical imaging are
variants of transform based noise reduction methods. We developed a wavelet based algorithm that
is used in mammography by several groups [Lu 1994]. One way of seeing the process is that the
coarse shape of the object (formed by the coarse scale coefficients) is extracted and allowed less of
the dynamic range to make room for the midscale coefficients. The idea is the same as the old
blurred mask or unsharp masking methods.

The contrast enhancement method we are presenting here follows the same form as the wavelet
based one described above. But, we are using the monotonic noise reduction algorithm [Weaver
1997 a&b] that we have used for noise reduction in fMRI studies [Weaver 1998].

We describe monotonic noise reduction and then shown how it is used to enhance contrast.
Monotonic Noise Reduction:

AN
TN r'L = L, — .

Figure : Monotonic noise reduction works in 1D. The layout is the same for both figures. The top is the original signal.
The next line is the signal with added noise; SNR=10 on the left and SNR=1 on the right. The next line is the blurred
signal with the selected extrema. The filtered signal is shown at the bottom. The filtered signal is the best monotonic fit
between selected extrema. The results are quite good even at very low SNR. There is no blurring of the edges and no
ringing. The only distortion is the noise leakage at the extrema.

Figure : A sagital MRI image is shown at the left; SNR=80. The middle is the original image with added noise:
SNR=16. The right is the result of monotonic noise reduction; SNR=85. The images are of good quality with no
blurring or distortion. Monotonic noise reduction works with much lower SNR that common wavelet denoising
algorithms.
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Contrast Enhancement:  Two features of the monotonic noise reduction method make it
attractive for contrast enhancement. 1) It is not band-limited; edges are not blurred at all. So there is
no reduction of sharpness in the contrast enhanced image. 2) There is no ringing caused by
undersampling in monotonic noise reduction. Ringing must be controlled just as noise must in the
contrast enhanced images or they will dominate the image.

Figure 1: Animage from an fMRI study. The contrast is low as it generally is in fMRI studies. The image on the right
is the contrast enhanced image. The darker areas are darker and the brighter areas are brighter than in the original image.
No visible artifacts were introduced in the contrast enhanced image. However, the artifacts that were present in the
original image are enhanced just as the small features are. The general intensity distribution remains the same so the
"look and feel" of the contrast enhanced image is the same as the original image.

Figure 2: The top curve is the 180th column of the original image. The bottom curve is the 180th column of the contrast
enhanced image. The same peaks are present but the size of the peaks are equalized: the larger discontinuities are
relatively smaller and the smaller peaks are relatively larger. The relative sizes of the peaks are generally the same so the
"look and feel” of the image is the same unlike histogram equalized images.

Figs. 1 & 2 show that the contrast has been enhanced without allowing noise to dominate. Each
feature in the contrast enhanced image can be seen in the original image but less clearly.

Jian Lu, D.M. Healy, Jr. and J.B. Weaver: "Contrast Enhancement of Medical Images Using Multiscale Edge
Representation." Optical Engineering, 33(7), 2151-61, 1994.

J.B. Weaver: "Reducing Noise in Images by Forcing Monotonic Change Between Extrema," The International Society
for Analysis, its Applications and Computation (ISAAC), 1997.

J.B. Weaver: "Removing Noise from Images: Least Squares Monotonic Functions on Line Segments Through the
Image" Proceedings of the Society of Magnetic Resonance, Vancouver, Canada, August, 1997, p 2043.

J. B. Weaver: "Monotonic Noise Suppression Used to Improve the Sensitivity of fMRI Activation Maps." Society of
Computer Applications in Radiology (SCAR) 1998, Journal of Digital Imaging.
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Elasticity estimates using phase contrast MRI measurements of

displacement.
by
John B. Weaver T, Elijah van Houten §, Michael I. Miga §, Francis E. Kennedy §, Steven
P. Poplack {, Helene M. Nagy T, Keith D. Paulsen §

T Department of Radiology, Dartmouth-Hitchcock Medical Center
§ Thayer School of Engineering, Dartmouth College

We are studying methods of reconstructing the elasticity from MRI measurements
of tissue vibration. There has been significant interest in estimating tissue elasticity from
MRI phase contrast measurements of periodic and quasi-static displacement. MRI seems
to hold more promise than ultrasound because of its ability to measure small tissue
displacements simultaneously in all three directions resulting from a single mechanical
stimulus while ultrasound is limited to recording tissue displacements in one preferred
direction at at time.

We have calculated tissue displacements with the partial differential equations
describing dynamic and static elastic deformation. Models of the breast were generated
from MRI scan data. We have performed simulations for various modes of vibration.
These simulations have led to three conclusions which impact how estimates of elasticity
can be obtained from displacement fields:

1) If the driving displacement is large enough to obtain 3D MR phase contrast images in
reasonable times, there is likely to be significant displacement in directions perpendicular
to the direction of the driving force.

2) Multi-dimensional displacement (e.g. in directions other than in-line with the driving
force) requires partial differential equation solution to adequately describe the
displacement field.

3) Because partial differential equations are necessary to describe the motion, those
equations must be used to estimate the elasticity.

If the displacement is all essentially in the direction of the driving force, simple local
estimates of the elasticity would be possible.




Removing Noise from Images: Least Squares Monotonic Functions
on Line Segments Through the Image

John B. Weaver
Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, N.H.

Introduction:

We introduce a new method of removing noise from
images. The method selects significant maxima (includes
the minima) in the image and forces the pixel values in the
filtered image to vary monotonically in all directions
between those maxima. For example, if an isolated
maximum is identified, the filtered image should fall away
from it monotonically in all directions. We can only
perform monotonic fits in one dimension, so we
approximate monotonicity in all directions by doing
monotonic fits along line segments through out the image.
The line segments are bounded by maxima and are oriented
in many directions through the image. The filtering
operation on each line segment replaces the pixel values on
that segment with a 1D monotonic sequence that fits the
original pixel values best in a least squares sense. The
method is simple, relatively fast and stable. SNR's as low
as 0.1 can produce acceptable results.

Methods:

An intermediate filtered image is found at each angle.
The original image is rotated to the appropriate angle. The
rotated image is blurred using a simple Gaussian filter in
the Fourier domain. The maxima along the rows of the

image are identified. The maxima that differ from the

adjacent maxima by less than the threshold are removed
from the set. In each row, all sequences of adjacent pixels
ending in maxima are replaced by the monotonic sequence
that best fits the original pixel values [1,2]. Then the same
procedure is followed on the columns of the row filtered
image. Remarkably, the rows stay essentially monotonic
when the columns are processed. The row-column filtered
image is averaged with the column-row filtered image and
rotated back to the original orientation. The result is the

_ intermediate filtered image for that angle. Intermediate

filtered images are obtained for each angle. The final

filtered image is a least squares combination of all of the
intermediate filtered images. The final filtered image is
almost monotonic between maxima in all directions.

Fig. 1 An example of the filter on a row. a) signal: two
boxcars with noise, SNR=1. b) the blurred signal and the
identified maxima. ¢) result of the monotonic fits

superimposed on the original boxcars. Peaks in the
filtered signal is noise that passes through the filter at the
maxima when the SNR is very low. Note that the edges of
the recovered boxcars are sharp & in the correct positions.

Conclusijonps:

We have presented a method of removing noise from
images using monotonic fits between maxima. It does not
blur edges, is robust and can be effective on images with
very low SNR's unlike most wavelet denoising methods.
However, it does not yet have the mathematical structure
and rigor that wavelet denoising methods have. It also

leaves point noise at the maxima at very low SNR's.

1 LC. Demetriou and M.J.D. Powell, IMA Journal of Numerical
Analysis 11:411-432 1991.
2 I.B. Weaver, et al. SPIE: Medical Imaging 2710-79, 1996.

Fig. 2 a) original high SNR image, SNR=80 within brain. b) image with added noise, SNR=16. ¢) lower SNR=4.
d) Gaussian blurred b showing the maxima. e) result of filter on b, SNR=85. ) result of filter on ¢, SNR=30.
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Acquisition of MR Elastography Measurements Using Steady State Motion

John B. Weaver*, Elijah Van Houten!, Michael I. Miga', Francis E. Kennedy!, Keith D. Paulsen'
*Dartmouth-Hitchcock Medical Center, Lebanon, N.H. 03756 and 'Thayer School of Engineering, Dartmouth College

Abstract

We have developed a method of reconstructing the tissue e-
lasticity from MR displacement measurements. The model
used to reconstruct the elasticity is based on the partial dif-
ferential equations describing steady state, harmonic motion.
Therefore, we have developed a system to generate true steady
state motion within tissue as well as within gel samples. Our
first motion maps and reconstructions from a homogeneous gel
phantom are shown.

Introduction

Measurements of harmonic motion and quasi-static displace-
ment can be accomplished accurately using MR [1,2,3]. The
inversion of that data to estimate the mechanical properties
of the tissue has proved to be a difficult problem. Currently
several groups have taken different approaches and the MR
acquisition has been modified to fit the inversion approach.
Methods to estimate the elasticity from traveling waves and
from quasi-static displacements have been developed. In all of
these methods, reconstruction has been problematic. We have
implemented an inversion method using finite element solu-
tions to the partial differential equations describing the elasto-
dynamic response of soft tissue under an applied harmonic de-
formation. The inversion method is a nonlinear Newton-based
iterative scheme which finds the distribution of Young’s modu-
lus which minimizes the difference between the measured and
model-predicted displacement values [4]. The problem with
our previous MR acquisitions is that the motion is started and
stopped during each cycle of the pulse sequence and we have
suggested that the transients in the motion produce incorrect
reconstructions [5,6]. Therefore, we have developed a method
of measuring displacements during steady state motion.

Methods

With simulations we have estimated that 100 cycles of 100
Hz motion allow the transients to dissipate for a wide variety
of mechanical properties and geometries. It is impractical to
get 100 cycles of motion for each MR excitation so we kept
the motion going throughout the gradient echo pulse sequence.
The motion was small enough that it did not disturb the signal
significantly except when the motion sensitizing gradients were
on. The difference between an image with and without the
motion was negligibly small without the motion sensitizing
gradients, which were two sine waves just before the read-out.

The signal used to drive the gel sample was produced by an
HP 33120A signal generator that was phase locked to the 10
MHz MR system clock. The signal generator was setup to gen-
erate a set number of 100 Hz sine waves after it was triggered
with a pulse from the MR. The signal generator then drives the
sample at 100 Hz for the duration of the pulse sequence. The
initial phase of the 100 Hz signal was controlled by the signal
generator and could be set by the operator. That initial phase
controls the relative phase between the motion and the motion
sensitizing gradients which must be changed to determine the
motion in each voxel. To keep the motion synchronized with
the pulse sequence throughout, the actual TR must be an in-
teger multiple of the 10 msec cycle. The measured TR was
actually 1 msec more than the TR set on the console. The
signal from the signal generator was the input of a power am-

plifier that drove a set of 6 piezoelectric stacks that vibrated
the sample.

Results

Our first maps of steady state motion in a homogeneous gel
sample are shown below. The reconstruction of the elasticity
is also presented. The average elasticity in the image is ap-
proximately what we expect from physical measurements in
the gel, around 20 kPa. The reconstruction is fairly unifor-
m, although there is some structure in the image where the
recovered values deviate from the nominal level.

X Amplitude Y Amplitude

X Phase

Figure 1: The amplitudes and phases of the harmonic steady
state motion in an essentially homogeneous agar gel phantom.

Figure 2: The elasticity reconstructed from the motion shown
above in an essentially homogeneous agar gel phantom.

This work was supported by NIH grant R01-NS33900, NSF
grant BCS-9978116 and NIH grant P01 CA80139-01A1.
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Three Dimensional Reconstructive Elastographic Imaging

Elijah E.W. Van Houten, Michael I. Miga, Francis E. Kennedy, John B. Weaver, Keith D. Paulsen
*Thayer School of Engineering, Dartmouth College, HB8000, Hanover, NH 03755

Abstract

Recently, a variety of methods for generating elastic con-
trast images of biological tissue have been put forward [1,2,3].
To date the large majority of these methods have been devel-
oped under assumptions of two dimensional mechanical behav-
ior for the tissue in question. While this may well be valid in
certain idealized conditions, it is by no means accurate for the
general case, especially for non-symmetric tissue geometries
or property distributions. In these situations, a three dimen-
sional property reconstruction scheme will be necessary. Here,
our efforts to develop a three dimensional elastic property re-
construction scheme are discussed and simulation results are
presented.

Introduction

MR based elastic property imaging is a rapidly evolving field
which seeks to determine the mechanical property distribution
within a tissue region using displacement or strain informa-
tion obtained for that region. This approach is necessary as
a tissue’s characteristic elastic makeup is not directly visible
by means of magnetic resonance or ultrasound imaging. For
the most part, the schemes developed for reconstructive imag-
ing have been presented using two dimensional assumptions.
While such assumptions are valid in certain cases, namely per-
fect symmetry in both property distribution and geometry,
they will not be valid in a general heterogeneous tissue, such
as the human breast. In these instances motion or strain in
the third dimension is not insignificant and must be accounted
for.

Methods

Previously, a finite element implementation of a subzone
based elasticity reconstruction scheme has been presented [2].
This method uses the full field displacement data available
from the MR to drive a non-linear reconstruction process based
on squared error minimization. This approach, documented
using a two dimensional plane strain approximation, is fully
amenable to a complete, three dimensional treatment. Using a
linear elastic model as the basic assumption for tissue motion,
the governing equation for the harmonic tissue response is

V.GVu+V(A+G)V -u=pw’u. (1)

The inversion process based upon the three dimensional
equations of linear elasticity is executed in a similar fashion
to the two dimensional scheme, with one notable exception.
The automated zoning process for the two dimensional inver-
sion problem is driven by a hierarchical ordering of element
based error, requiring a global solution using the current prop-
erty distribution estimate for every global iteration. For high
resolution three dimensional problems global solutions are too
costly to perform at each global inversion iteration. Thus, for
the three dimensional inversion algorithm the zone location is
selected in a random manner from the list of elements not yet
operated on during the current iteration step.

Results & Discussion

Initial simulation experiments have been performed, fig. 1,

using displacements generated through a finite element solu-
tion with 15% random noise added to the data. To minimize
the effects of such added noise on the inversion solution, a
small degree of spatial filtering was used during the inversion
process. This is achieved by incorporating the current prop-

erty estimate of nodes in direct contact with a given node, 1,

such that E** = (1 - H)Efld + N%Zjv__jl E;’Zd, where N; is
the number of neighbor nodes connected to node 3. For this

experiment a value of 0.05 was used for 4.

b

Figure 1: Three dimensional phantom simulation reconstruc-
tion for a 5cm x 5cm x 3.5cm geometry with a 25 kPa back-
ground Young’s modulus and a 1 cm diameter 250 kPa spher-
ical inclusion. (a) Inversion solution for 0% noise case. (b)
Inversion solution for 15% noise solution.

The inversion process consisted of roughly 20 global itera-
tions, each consisting of 300 zone based parameter updates on
average, with the average zone size being roughly 330 nodes.
The total solution consists of 24094 nodal stiffness values. This
work was supported in part by NIH grant 530374.
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